

VAISALA

Nacelle-Mounted Lidar reduces the uncertainty of Power Performance Testing(PPT) by Met Mast: a fully investigation

Zhi Liang (梁志) Application Manager of WindCube Nacelle Contact: <u>zhi.liang@vaisala.com</u>

Agenda

- Joint Project
- Measurement specification
- Test Setup
- Comparison of Wind Speed
- Result(1): Wind Speed at Hub Height
- Result(2): Wind shear and REWS
- Result(3): Terrain evaluation
- Conclusions

Joint Project: Power Performance Test

Objectives

- Extensive field study to prepare for the use of Nacelle Mounted Lidars (NMLs) for Power Performance Testing(PPT) on operational basis
- First joint industry project following the context of the IEC 61400-50-3 standard

Methodology

- 3-month campaign in ENGIE's wind farm (US)
- Onshore flat terrain
- Reference instruments: (1) IEC met mast and
 (2) WindCube Ground-Based lidar

Measurement specification

Measurement specifications			
Range	50m to 450m/700m depending on version		
Data sampling rate	1 Hz beam swap frequency		
Ranges	10/20 user defined distances, simultaneously measured		
Speed accuracy	0.1 m/s		
Speed uncertainty	< 2%		
Direction accuracy	+/- 0.5°		
Probed lenght	30m (constant at all range gates)		

Restricted

Test Setup

Мар

Instrumentation	Туре	Distance from WTG [m]	Distance from WTG [D=127m]	Measurement Height [m]
Nacelle-mounted Lidar	WindCube Nacelle	50m-700m	0.4D-5.5D	89m
Met Mast	IEC compliant	282m	2.2D	32m-89m
Ground-based Lidar	WindCube	290m	2.3D	40m-200m

Two wind sectors:

- 1) 187°-207°: met mast centered wind sector
- 2) 140°-210°: IEC valid wind sector

Comparison of Wind Speed

Centered wind sector: 187°-207°

Valid IEC wind sector: 140°-210°

Key take away

- Better wind speed correlation between the IEC met mast and nacelle lidar when using a smaller wind sector.
- Sampling points in small sector is not enough for an accurate PPT.

Sector	ALL	187°-207°	140°-210°
Data points	13743	1232	6507

Restricted

Result(1): Wind Speed at Hub Height

- Fig(a) and Fig(b) show:
 - Scattering points of PPT by WCN are more concentrated than PPT by Met Mast.
- Fig(d) shows the Standard Deviation (SD) by WCN in the bin of wind speed is significantly lower than SD by Met Mast.
- WCN is always measuring the wind speed exactly in front of the wind turbine.

Result(1): Uncertainty on AEP

- The evaluation of PPT by two devices on the uncertainty of Annual Energy Production(AEP), assuming wind Weibull distribution.
- AEP Range using large wind sector:
 - Mast: [3592h, 4265h]
 - WCN: [3739h, 4252h]
- The overall uncertainty of NML is within the uncertainty range of Met Mast.

Result(2): Wind shear and REWS

- REWS: Rotor Equivalent Wind Speed
- Definition by IEC 61400-12-1:
 - $v_{eq} = \left(\sum_{i=1}^{n_h} v_i^3 \frac{A_i}{A}\right)^{1/3}$
 - n_h is the number of available measurement heights (n_h ≥3);
 - v_i is the wind speed at height i;
 - A is the complete area of rotor;
 - A_i is the area of the ith segment.
- Result: The measurement of wind shear and REWS by WCN is accurate.

The measurment by GBL and WCN

WESC 2023 23 - 26 MAY | GLASGOW, UK

J Tissot. IEC REWS calculation with 4–beam nacelle lidar, WindTech2020, IEC-REWS-Calc-4Beam-Nacelle-Lidar (vaisala.com)

REWS comparison by GBL and WCN

- Results shows some benefits of REWS:
 - REWS can reduce the uncertainty of PPM for both GBL and WCN.
 - PPM by REWS of WCN has the lowest uncertainty, which shows the good potential application for the evaluation of the turbine power performance.

Result(3): Terrain evaluation(on-going)

- OpenFOAM is used to simulate the wind field difference at two locations at multiple wind directions.
- The simulation result shows: even in the flat terrain, there is slightly difference of wind field of two locations.
- Idea for further study:
 - WCN measures RWS by 4 beams;
 - Research on RWS and GBL for the spatial difference of wind field.

Conclusions:

- Conclusions:
 - Better spatial coherence of the nacelle lidar measurements.
 - Difference between power curves measured with IEC met mast and nacelle lidar is <2%.
 - AEP Standard Deviation is lower for Nacelle Mounted Lidar(NML), especially for a winder sector.
 - Industry is ready for PPT using NML on operational basis following IEC-50-3.
 - The measurement of wind shear and REWS by NML is accurate.
- Planning for the next work
 - Investigation on PPT Uncertainty by measurement and simulation;
 - Turbulence Intensity on PPT: TI impact the PPT variation.

VAISALA

Thank you! Contact: zhi.liang@vaisala.com