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Abstract—Researchers have studied a number of simulating 

functions for modelling CN Tower lightning return-stroke 

current. They found out that Heidler and the Pulse functions 

overcome certain limitations, including time-derivative 

discontinuities. On the other hand, incompletely-recorded current 

derivative signals represented another challenge. The paper 

proposes a double-term Pulse function that is investigated and 

compared with the double-term Heidler function for modelling the 

lightning return-stroke current. The double-term simulating 

function, used to recover a large incompletely-recorded return-

stroke current derivative signal measured on June 10, 1996. 

Keywords—Heidler function, Pulse function, lightning return-

stoke current, signal recovery 

I. INTRODUCTION 

Lightning has been one of the most intriguing phenomenon 

known to man. Benjamin Franklin started investigating 

electricity in 1746. In 1752, during a thunderstorm, Franklin 

conducted his famous experiment when he flew a kite with a 

conducting string and a key tied to the bottom of the kite. During 

a thunderstorm, he observed sparks flying from the key tied to 

the conducting kite string and onto his knuckles. This 

experiment proved that thunderclouds are electrically charged 

and lightning is electrical [Uman, 1971]. Despite its spectacular 

nature, lightning has a long record of catastrophic damages, 

especially for tall objects. Study of lightning has helped in 

protecting tall structures, forests and powerlines [Hussein et al., 

1995; Janischewskyj et al., 1997]. The Canadian National (CN) 

Tower located in Toronto, 553m in height, has been pivotal to 

the emergence of lightning studies at the University of Toronto 

and Ryerson University. It provides a suitable object for 

recording tall-structure lightning parameters. Although the 

lightning flash density in Toronto is about 2.5/km2/year, the CN 

Tower normally receives dozens of direct strikes yearly 

[Janischewskyj et al., 1997]. In the past, researchers did 

investigate a number of simulating functions for modelling CN 

Tower lightning return-stroke current, including the double-

exponential and Jones modified double-exponential functions. 

However, these functions were found to have problems due to 

their time-derivative discontinuities [Heidler and Cvetic, 2002; 

Jones, 1977]. On the other hand, Heidler and the Pulse functions 

were used to overcome these limitations [Elrodesly and Hussein, 

2012; Yazhou et al., 2002]. Other challenges were early noted 

due to reflections from CN Tower’s structural discontinuities 

[Hussein, 2009; Hussein et al., 2014; Rahimian and Hussein, 

2015] and the interfering Loran-C Signal [Liatos and Hussein, 

2005; Nedjah, et al., 2010]. Furthermore, the incompletely 

recorded current derivative signals, which exceeded the 

maximum signal set level, represented another challenge 

[Rahimian and Hussein, 2015]. In fact these incompletely 

recorded current derivative signals, whose peaks are well above 

the noise level, proved to be quite valuable for modelling 

purpose. 

   The paper proposes a double-term Pulse function that is 

investigated and compared with the double-term Heidler 

function for modelling the lightning return-stroke current. In the 

proposed paper, a complete large return-stroke current 

derivative signal recorded on June 10, 1996, is artificially cut. 

Then, each of the chosen double-term simulating functions is 

used to try to recover the original artificially cut signal for 

evaluating the proposed algorithm before applying it on signals 

that were incompletely recorded. The quality of fitting of the 

measured signal and the recovered signal are evaluated with R2 

fitting factor. Furthermore, the simulating functions are again 

used to recover incompletely-recorded return-stroke current 

derivative signals, which were measured on June 10, 1996. 

The main objective of this study is to successfully recover 

the valuable incompletely-recorded signals, which are to be used 

for evaluation of tall-structure lightning models by comparing 

the simulated electric and magnetic fields with those measured 

[Rahimian and Hussein, 2015]. 
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II. SIMULATING  FUNCTIONS 

The simulating functions, Heidler and the Pulse functions, 

each consists of a rise function 𝑥(𝑡) and a decay function 𝑦(𝑡). 

Rise and decay functions have a decoupling relationship with 

the condition that during the rise 𝑦(𝑡) ≈ 1 and during the decay 

𝑥(𝑡) ≈ 1 [Heidler and Cvetic, 2002]. The general single-term 

current waveform of each simulation function is defined as: 
 

 𝑖(𝑡) = 𝐼𝑚𝑎𝑥 ∙ 𝑥(𝑡) ∙ 𝑦(𝑡) (1) 
 

Mathematically, double-term Heidler current function and its 

derivative are defined as: [Milewski et al, 2008; Rahimian et 

al., 2015; Yazhou et al., 2002] 
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(3) 

The proposed double-term Pulse function is defined in (4) 

and its derivative is given in (5).  
 

 𝑖(𝑡) = 𝐼1 ∙ (1 − 𝑒
−  

𝑡
𝜏11)

𝑛1

∙ 𝑒
−  

𝑡
𝜏21 +  (4) 

                           𝐼2 ∙ (1 − 𝑒
−  

𝑡
𝜏12)

𝑛2

∙ 𝑒
−  

𝑡
𝜏22  

=  𝑖1(𝑡) +  𝑖2(𝑡) 
 

 

𝑑𝑖(𝑡)

𝑑𝑡
= 𝑖1(𝑡) ∙  [ 

𝑛1

𝜏11

(
𝑒

−  
𝑡

𝜏11

1 − 𝑒
−  

𝑡
𝜏11  

) − 
1

𝜏21

 ] + 

        𝑖2(𝑡) ∙  [ 
𝑛2

𝜏12

(
𝑒

−  
𝑡

𝜏12

1 − 𝑒
−  

𝑡
𝜏12  

) − 
1

𝜏22

 ] 

(5) 

 

To obtain the best fit for the measured current derivative 

waveform, the time derivative of Heidler and the Pulse functions 

are used here for the simulation. The current functions are then 

obtained by integrating the simulated current derivatives. 

Some constraints are introduced to improve the fitting of 

each current derivative simulation as in [Milewski et al, 2008; 

Rahimian et al., 2015]. Constraints force the analytical 

parameters 𝑛1, 𝜏21, 𝜏11, 𝑛2, 𝜏22, and 𝜏12 to reach their optimal 

values, which yields a better fit of the simulated current.  

 Forcing the maximum steepness constraint   
𝑑2𝑖

𝑑𝑡2|
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= 0,   

where 𝑡𝑚𝑠 is the time at which the maximum steepness of the 

current or the time at which the maximum amplitude of the 

current derivative occurs. This constraint mentioned above 

provides the best fit [Elrodesly et al., 2012; Rahimian et al., 

2015; Yazhou et al., 2002].  

However, it was not possible to directly apply the maximum 

steepness constraint on the double-term Heidler function and 

obtain a closed expression for 𝜏11  and 𝜏12 . Therefore, the 

maximum steepness constraint is applied onto equation (2) to 

derive the following expressions.  

𝑓ℎ(𝑡𝑚𝑠) = 𝑖1(𝑡𝑚𝑠) ∙  [
𝑛1

𝑡𝑚𝑠

(
𝑛1 − 1

𝑡𝑚𝑠

− 
2

𝜏21

)  

+ 
𝑛1𝑡𝑚𝑠

𝑛1−1

𝜏11
𝑛1 + 𝑡𝑚𝑠

𝑛1
(

2𝑛1𝑡𝑚𝑠
𝑛1−1

𝜏11
𝑛1 + 𝑡𝑚𝑠

𝑛1
  −   

3𝑛1 − 1

𝑡𝑚𝑠

  −   
2

𝜏21

) 

                                                                    + 
2

𝜏21
2
] 

                                 (6) 

 𝑔ℎ(𝑡𝑚𝑠) =  −  
(

𝑡
𝜏12

)
𝑛2

1 + (
𝑡

𝜏12
)

𝑛2
∙ 𝑒

−  
𝑡

𝜏22  

∙ [
𝑛2

𝑡𝑚𝑠

(
𝑛2 − 1

𝑡𝑚𝑠

− 
2

𝜏22

) + 
𝑛2𝑡𝑚𝑠

𝑛2−1

𝜏11
𝑛2 + 𝑡𝑚𝑠

𝑛2
 

(
2𝑛2𝑡𝑚𝑠

𝑛2−1

𝜏11
𝑛2 + 𝑡𝑚𝑠

𝑛2
  −   

3𝑛2 − 1

𝑡𝑚𝑠

  −   
2

𝜏22

)+ 
2

𝜏22
2
] 

       (7) 

 

𝐼2 = 
𝑓ℎ(𝑡𝑚𝑠)

𝑔ℎ(𝑡𝑚𝑠)
 

 

(8) 

Then, the expression for 𝐼2 is substituted into (3) to acquire 

the final expression (9), which is used in the fitting process.  
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(9) 

For the double-term Pulse function, the same procedure is 

applied onto equation (4) to derive the following expressions. 
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Equation (12) is substituted into (5) to derive the final 

expression (13), which is to be used in the fitting process.  
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III. METHODOLOGY 

One of the multi-stroke CN tower flashes, recorded on June 

10, 1996, is utilized in this paper for modelling. The 6th and 7th 

return-stroke current derivative signals are used for modelling 

due to their high current derivative peaks. 7th return-stroke 

current derivative signal is incompletely-recorded, which is to  

be used for the recovery process.  

A. Matching Waveforms 

For the fitting process, the starting point of the current 

derivative waveform is chosen from the measured lightning 

return-stroke current waveform [Milewski, 2008]. Fig. 1 

illustrates the 6th return-stroke current derivative signal. The 

initial point is assumed to be at 𝑡 = − 0.21 𝜇𝑠  for modelling 

purpose.  

The matching waveforms are then divided into three time-

windows. The decoupling relationship of Heidler and Pulse 

functions allow the signal to be easily divided into sections 

[Elrodesly et al., 2012]. The three time windows are:  

1. The initial impulse before arrival of reflections (Fig.2) 

2. The reflections and early decay part of the waveform 

3. The decay portion is based on the current waveform (Fig. 3) 

 

Figure 2 illustrates the first time window of the 6th current 

derivative matching signal. The duration of the first time 

window is 𝑡 = 0 − 0.6 𝜇𝑠 because the reflection from the space 

deck is visible after 𝑡 = 0.6 𝜇𝑠 [Rahimian et al., 2015].  

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 1.  6th current derivative waveform. Zoomed-in view illustrates the starting 

point at which di(t)/dt ≈ 0 

 

 
 
Fig. 2.  The first time window of the 6th current derivative matching signal 

 

Figure 3 illustrates the third time windows of the 6th return-

stroke current waveform obtained by numerically integrating its 

current derivative matching waveform. This time window is 

used to estimate 𝜏21 and 𝜏22, as explained in section B. 

B. Estimating 𝝉𝟐𝟏 and 𝝉𝟐𝟐 

First step in approximating the analytical parameters is to 

estimate the decay time constants 𝜏21 and 𝜏22. During the decay 

portion, both simulating functions are simplified to: 

 

 𝑖(𝑡) = 𝐼1 ∙  𝑒
−  

𝑡
𝜏21 + 𝐼2 ∙  𝑒

−  
𝑡

𝜏22  (14) 

   

 𝜏21 and 𝜏22 can be estimated by fitting the decay function 

described by (14) into a chosen third time window, using 

MATLAB. For the 6th return-stroke current waveform, using 

the third-time window described in Fig. 3, it was found 

that 𝜏21 = 0.09754 𝜇𝑠 , 𝜏22 = 110 𝜇𝑠 , 𝐼1 = 0.2785 𝑘𝐴 , and 

𝐼2 = 9.834 𝑘𝐴 with R2 fitting of 0.9325, indicating a good fit. 

The fitting process is illustrated in Fig. 3. 

 

 

 

STARTING POINT -0.21μS 

STARTING POINT -0.21μS 

ZOOMED 
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IV. RESULTS 

The derivative of Heidler and the Pulse functions described 

by (9) and (13), respectively, are used in fitting the 6th current 

derivative matching waveform. The fitting is conducted using 

MATLAB Fitting Toolbox to estimate the unknowns, 𝐼1, 𝑛1 , 

𝜏21, 𝜏11, 𝑛2, 𝜏22 and 𝜏12.  

The fittings of Heidler and Pulse functions obtained for the 

6th current derivative matching waveform and its current 

waveform are illustrated in Figs. 4 and 5, respectively. The 

analytical parameters obtained for the waveform is summarized 

in Table I along with the R2 fitting factors. 

In Fig. 4, tms of the current derivative of Heidler function 

matches tms of the 6th current derivative matching waveform, 

which was attained using the maximum steepness constraint, 

whereas the maximum derivative of the Pulse function is shifted 

to the right by 0.005μs. The location of the current derivative 

peak based on Heidler function is found to be closer to the 

measured peak in comparison with that based on the Pulse 

function.  

Table I indicates that the simulation based on the derivative 

of the Pulse and Heidler functions produced excellent fittings of 

R2 = 0.9975 and R2 = 0.998, respectively. The simulation based 

on the Heidler function produced a slightly better fit than that 

based on the Pulse function. Furthermore, the location of the 

maximum current derivative peak based on Heidler function 

simulation is much closer than that using the Pulse function (Fig. 

4). The maximum amplitude of the 6th current derivative 

matching waveform is 36.97 kA/μs, whereas that estimated from 

the derivative of Heidler function is 38kA/μs. However, the 

derivative of the Pulse function is estimated to be 37.45kA/μs. 

Thus, the maximum current derivative peak based on the Pulse 

function simulation is closer to the measurement than that using 

Heidler function (Fig. 4). 

Figure 5 indicates that the peak of the 6th return-stroke 

current waveform was not reached by Heidler and the Pulse 

functions. But the Heidler current function has a minor 

overshoot compared with that of the Pulse function. Observing 

Fig. 5, shows that the Pulse function reaches the current peak 

slower in comparison with the Heidler function. Both Heidler 

and the Pulse functions reasonably simulated the measurement. 

One of the biggest challenges faced by many researchers is 

the incompletely-recorded return-stroke current derivative 

signals, which exceeded the maximum signal set levels 

[Rahimian, and Hussein, 2015]. These incompletely-recorded 

return-stroke current derivative signals, such as the 7th return-

stroke current derivative signal, which will be further 

investigated in this paper, whose peaks are well above the noise 

level, proved to be quite valuable for modelling purpose.   

Prior to starting the recovery of the incompletely-recorded 

7th return-stroke current derivative signal, a completely recorded 

signal with negligible amount of noise, the 6th return-stroke 

current derivative signal is artificially cut and the recovery 

process is applied on it (Fig. 6).   

The measured data of the 6th return-stroke current derivative 

within the interval 0.35μs < t < 0.55μs is removed to obtain a 

waveform that is artificially cut at the 50% level from the peak, 

as illustrated in Fig. 6. The same methodology described using 

the 6th return-stroke current derivative matching waveform is 

followed to fit the simulating functions for the artificially-cut 6th 

current derivative waveform. The fitting results obtained for the 

artificially-cut 6th current derivative waveform and its current 

waveform are illustrated in Figs. 6 and 7, respectively. The 

analytical parameters obtained for this waveform is summarized 

in Table II along with the R2 fitting factors. 

The recovery of the artificially-cut 6th current derivative 

waveform is obtained by using the current derivative of the 

Pulse function. It is found to be more successful in the recovery 

of the artificially-cut 6th current derivative waveform compared 

with the current derivative of Heidler function.  

In Fig. 6, tms of the current derivative of the Pulse waveform, 

which was attained using the maximum steepness constraint, is 

shifted to the right by 0.02μs. Table I indicates that the 

simulation based on the derivative of the Pulse function 

produced an excellent fitting of R2 = 0.9955. Furthermore, the 

time location of the current derivative peak, based on the Pulse 

function (Fig.6), is close to the location of the measured current 

derivative peak. Furthermore, the maximum amplitude of the 6th 

current derivative measured waveform is 36.97 kA/μs and the 

recovery using the derivative of the Pulse function estimated 

peak is 36.52kA/μs. Thus, the maximum current derivative peak 

based on the Pulse function simulation is proved to be close to 

the measured data.  

Figure 7 indicates that the peak of the 6th return-stroke 

current waveform was not reached by the Pulse function. It has 

a minor overshoot. However, the Pulse function reasonably 

recovered the measurement data.  

The same methodology described using the artificially-cut 

6th return-stroke current derivative matching waveform is 

followed to fit the simulating functions for 7th return-stroke 

current derivative waveform, the incompletely-recorded signal. 

The recovery of incompletely-recorded signal is obtained using 

the current derivative of Heidler function. It is found to be more 

successful in the recovery process compared with the current 

derivative of the Pulse function. The fitting results obtained for 

the 7th return-stroke current derivative waveform is illustrated in 

Fig. 8. The analytical parameters obtained for this waveform is 

summarized in Table II along with the R2 fitting factors. 

In Fig. 8, tms of the current derivative of Heidler waveform 

match tms of the 7th current derivative matching waveform, 

which was attained using the maximum steepness constraint. 

Table II indicates that the simulation based on the derivative of 

Heidler function produced an excellent fitting of R2 = 0.9843. 

The maximum amplitude of the 7th current derivative waveform 

estimated by Heidler function is 140.1kA/μs. Thus, the Heidler 

function simulation is very close to the measured data and 

reasonably recovered missing data.   
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Fig. 3.  Third time window of the 6th return-stroke current waveform and the 

fitting of the decay function described by (12), which is used to estimate 𝜏21 

and 𝜏22.  

 

 
Fig. 4.  The fitting of Heidler and Pulse derivative functions of the 6th current 

derivative matching waveform.  

 
Fig. 5.  The fitting of Heidler and Pulse functions of the 6th current waveform 

(obtained by numerically integrating the 6th current derivative matching 
waveform).  

 

 
 

 
Fig. 6.  The fitting of the Pulse derivative function of the artificially cut 6th 

current derivative waveform. 

 
 

 

 
Fig. 7.  The fitting of the Pulse function of the artificially cut 6th current 

waveform (obtained by numerically integrating). 

 

 
Fig. 8.  The fitting of Heidler derivative function of the 7th current derivative 

waveform (incompletely recorded waveform). 
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V. CONCLUSION 

Following numerous investigations, researchers found out 

that Heidler and the Pulse functions overcome a lot of limitations 

experienced by the double-exponential and Jones modified 

double-exponential functions.  

The paper presented a comparison between Heidler and the 

Pulse functions for modelling the lightning return-stroke 

current, using the 6th return-stroke current derivative waveform 

measured on June 10th 1996 at the CN tower. A complete large 

return-stroke current derivative signal is artificially-cut at the 

50% level from the peak. Then, each of the chosen double-term 

simulating functions are used to try to recover the original 

artificially-cut signal for evaluating the proposed algorithm 

before applying it on 7th return-stroke current derivative 

waveform, was not a completely recorded signal. 

With the 6th current derivative matching waveform, the 

derivative of the Pulse and Heidler functions produced 

exceptional fittings of R2 = 0.9975 and R2 = 0.998, respectively. 

With the artificially-cut 6th current derivative waveform, the 

derivative of the Pulse function found to be successful in the 

recovery process and produced R2 = 0.9955. Using the 7th return-

stroke current derivative waveform, the derivative of Heidler 

function is found to be more successful in the recovery process 

and produced R2 = 0.9843. Both Heidler and Pulse simulation 

functions can successfully simulate tall-structure lightning 

return-stroke currents and recover valuable missing data.  
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