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Abstract—This  paper  describes  usage  of  several  third-party
Python (programming language) libraries, which could be seen as
very  useful  for  easy  and  efficient  manipulation  and  analysis  of
data produced by the lightning detection networks (LDNs). Python
is a high level interpreted language with extensive library of third-
party packages and APIs. Several of its libraries, popular within the
data science community, could be seen as very useful for efficient
analysis of   data produced by LDNs,  such as:  geographical and
probability density distribution of lightning strikes,  lightning flash-
cell identification, its movement tracking, and nowcasting.
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I. INTRODUCTION 

Lightning detection networks, which nowadays span entire
continents, provide extremely valuable information concerning
the  lightning  phenomena,  which  can  be  of  particular
importance in several  very different sectors of industry,  e.g.,
electric  power utilities (overvoltage  and lightning protection,
insulation  coordination),  insurance  companies  (risk  analysis,
insurance  claims),  aviation,  weather  bureaus,  and  even  in
different  civil  sectors  (severe  weather  warnings,  fire
prevention, safety hazards at public events), [Cummins et al. ,
1998; Hunt et al., 2016]. 

The basic products of these networks (of lightning detection
sensors)  can  be  seen  as  a  time  series  of  ''geotagged''  data
objects  with  various  additional  features.  For  example,  data
produced by the LINET network [Betz et al. (2008), Betz et al.
(2009)],  which is operated by the German company nowcast
GmbH (www.nowcast.de)  and  covers  a  European  continent,
features (among others) following attributes: (i) exact date-time
stamp of lightning capture (down to the microsecond level), (ii)
longitude and latitude of the strike position (with accuracy of
three  decimal  places),  (iii)  lightning  current  amplitude,  (iv)
polarity  of  the  lightning  strike,  (v)  type  of  strike  (cloud-to-
cloud or cloud-to-ground), (vi) emission height of CC strokes,

(vii) location detection accuracy information, etc. This data is
available  in  several  different  formats  (XML,  TSV),  can  be
retrieved using different protocols (FTP, SFTP, HTTPS), can
be  compressed  or  not,  and  can  have  different  co-ordinate
projections (via the selectable desired EPSG-ID).

This  data  can  be  analyzed  from  several  different
perspectives, such as [Campos et al., 2007; Kuk et al., 2010;
Lakshmanan and Smith, 2009; Pedeboy et al., 2016; Poelman
et  al.,  2017;  Peters  and  Meng  (2013);  Qiu  et  al.,  2013;
Vasconcellos  et  al.,  2006;  Sarajcev,  2016]:  (a)  long-term
yearly, seasonal, and diurnal lightning activity over a particular
region  of  interest,  (b)  geographical  density  distribution  of
lightning strikes (i.e. ground flash density maps), (c) statistical
cumulative  distribution  function  of  lightning-current  ampli-
tudes for a particular region and/or time-frame, (d) positive-to-
negative lightning ratio for a particular region and season, (e)
lightning  flash-cell  identification,  (f)  flash-cell  movement
tracking,  and  (g)  nowcasting.  Treatment  of  the  data  is
predicated on the analysis for which it is intended, but should
be as easy and efficient as possible. For example, analysis (a) is
concerned primarily with the time-related data features, while
analysis (b) is concerned primarily with a geographic-related
features.  Hence,  efficient  manipulation of time-series  data is
seen  as  a  necessary  precondition  for  analysis  (a),  as  is
manipulation  of  geospatial  data  for  the  analysis  (b).
Furthermore, analysis (e) uses clustering (and outlier detection)
of lightning data, which falls under a machine learning domain
[Betz et al., 2008; Pedeboy et al., 2016)]. It also makes use of
convex hulls, which need to be manipulated easily in order to
implement analyses mentioned under (f) and (g). 

Python  has  a  powerful  arsenal  of  libraries
(https://pypi.python.org)  which  can  be of  use for  these  very
different  tasks,  such  as  (alphabetically  ordered):  basemap,
datetime, fiona, folium, geopandas, geos, hdbscan, matplotlib,
numpy,  pandas,  pickle(shelve),  requests,  scikit-learn,  scikit-
image, scipy, seaborn, shapely, statsmodels, and many others.

https://pypi.python.org/pypi
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A  brief  introduction  to  the  application  of  some  of  these
libraries, for several aspects of LDN data processing, will be
demonstrated  in  the paper,  as follows:  (1)  seasonal,  weekly,
daily,  and  diurnal  lightning  activity,  (2)  kernel  density
estimation  of  lightning-current  amplitudes  statistical  proba-
bility  distribution,  (3)  bivariate  kernel  density  estimation  of
geographical  lightning  distribution,  and  (4)  clustering  for
lightning  flash-cell  identification  for  lightning  tracking  and
nowcasting.

II. ANALYSIS OF LIGHTNING DATA

A detailed information related to the lightning activity over
the  European  continent  can  be  obtained  from  the  LINET
network,  operated by the German company nowcast  GmbH,
where  datasets  for  different  regions  and  spanning  different
time-windows can be purchased on-demand. One typical small
dataset has been obtained, for research purposes only, covering
a rectangular area of some 400 km2 of the Adriatic hinterland
on  the  Croatian  side  and  spanning  a  time-window  of  one
calendar  year.  The  mentioned  area  contains  within  it  four
individual wind farms, with forty wind turbines in total. 

Table I present an example of lightning data obtained from
LINET network, where type “1” means cloud-to-ground strike
(CG)  and  type  “2”  indicates  cloud-to-cloud  strike  (CC).  A
polarity  of  each strike is  indicated  with the amplitude (kA).
Additional data related to the location detection accuracy and
other features (height of CC strikes) is also available.

TABLE I. EXAMPLE OF LIGHTNING DATA PARAMETERS

Timestamp Longitude Latitude Type Amplitude
2014-01-19

18:44:05.767 15.901 43.696 1 -23.2

2014-01-19
18:44:06.176 15.938 43.702 2 5.9

2014-01-19
18:51:20.268 15.894 43.743 1 -116.6

2014-01-19
18:53:58.817 15.901 43.778 1 9.9

2014-01-19
23:13:53.933 15.918 43.674 2 -5.1

A. Seasonal, weekly, and diurnal lightning activity

Using  the  “pandas”  (https://pandas.pydata.org)  Python
library, carrying out complex analysis of the presented dataset
becomes a straightforward task. Pandas has a powerful set of
features for dealing with time series. Furthermore, “geopandas”
package (http://geopandas.org) combines powerful features of
the pandas library with the geometric features of the “shapely”
Python library,  enabling  efficient  manipulation of  geospatial
information contained within the lightning dataset. 

Fig. 1 presents a “violin plot” of the aggregated seasonal
CG lightning activity for the analyzed region. It can be seen
that  the  winter  and  summer  lightning  have  very  different
statistical  distributions,  and  furthermore,  that  statistics  of
positive and negative lightning are quite different (as would be
expected).  It  has  been  found that  the  proportion  of  positive
lightning is far higher than 10 % that is often assumed. At the
same time, Fig. 2 presents weekly aggregated lightning data for
the whole  year.  Figures  are  prepared  using the “matplotlib”
(www.matplotlib.org) library.

Fig. 1. Violin plot of the seasonal lightning activity.

Fig. 2. Weekly aggregated lightning activity.

https://matplotlib.org/
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It is interesting to notice that this dataset features more than
a dozen days with very high lightning activity, although they
would  still  count  toward  a  single  thunderstorm  day.  One
particular date (2014-09-01) features over 1200 CG lightning
strikes,  distributed  over  several  rather  narrow  time intervals
with  extreme  CG lightning  activity.  As  an  example,  Fig.  3
presents a “stem plot” of the 10-minute interval of very intense
lightning  activity.  Diurnal  pattern  exhibits  rather  short  time
intervals with bursts of lightning activity (both CG and CC),
interspersed with quiet intervals.

Fig. 3. Stem plot of the10-minute lightning activity.

B. Geographical and probability density distributions

Recorded geographical locations (latitude and longitude) of
each CG lightning strike can be employed for the purpose of
obtaining  a  detailed  local  distribution  density  of  lightning
strikes,  which relates  directly  to the lightning risk.  This  has
been tackled here using the bivariate kernel density estimation
(using  Gaussian  kernels)  in  spherical  geometry  (i.e.  using
haversine distance),  and mapping the ensuing distribution by
means of the Mercator  projection. The “scikit  learn” Python
library (http://scikit-learn.org/stable/index.html) has been used
for the bivariate  KDE procedure,  along with the  “basemap”
library  (https://matplotlib.org/basemap/)  for  the  subsequent
Mercator  projection. The result of this procedure is the very
detailed  map  of  local  distribution  density  of  CG  lightning
strikes, graphically depicted in Fig. 4. It has been noted that the
lightning pattern follows terrain features quite well, even with
this small dataset. 

Negative  CG  lightning  amplitudes  from  the  dataset  has
been fitted with the Log-Normal distribution and the result is
graphically depicted in Fig. 5. It includes histogram of the data,
obtained PDF, along with a “probability plot” which holds the
same  information  as  the  better  known  “QQ  plot”.  The
“statsmodels”  (http://www.statsmodels.org)  and  parts  of  the
“Scipy” (www.scipy.org) Python libraries have been used for
that purpose. It can be seen from the probability plot that the
Log-Normal distribution is in-fact not a good fit for the data. In
addition,  it  has  been  found  that  the  median  of  this  Log-N
distribution is far lower than the 30 kA, which has often been
assumed (see IEC 62305 for more information). In fact, it has
been shown on several occasions [Franc et al., 2017; Holler at
al.,  2009] that the median of the Log-Normal distribution of
lightning data is significantly below the 30 kA level.

Fig. 4. Bivariate kernel density estimation of geographical distribution
of negative CG lightning activity.

Fig. 5. Fitting Log-N distribution of negative CG lightning amplitudes.

C. Wind turbine lightning incidence

Wind  turbine  (WT)  lightning  incidence,  in  terms  of  its
attractive area to lightning, can be established, either by using
the “striking distance” or the “attractive radius” concepts.  In
general,  attractive  radius  has  a  smaller  magnitude  than  the
corresponding striking distance,  which can be of importance
for establishing the WT lightning incidence. Using a distance
measure (i.e. orthodromic distance) between the WT position
and the position of each lightning strike (both defined in terms
of  the  longitude  and  latitude),  it  can  be  determined  if  the
lightning strikes within the attractive area of the WT, which
counts  as  a  lightning  strike.  An  example  of  the  statistical
frequency distribution (of geographical locations) of lightning
strikes to a particular WT (130 m tall on a 300 m tall hill, in
terms of distances in meters and incident angles), is graphically
presented in Fig. 6 as a “windrose plot” centered at the WT
position [Sarajcev et al., 2016]. This distribution might give an
indication on the principal direction of the lightning incidence,
establishing  the  prevailing  direction  of  the  thunderstorm
movement (e.g. for the purpose of shielding mast positioning).

https://www.scipy.org/
http://www.statsmodels.org/
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Fig. 6. Windrose plot of the geographical distribution of WT incident
lightning strikes.

D. Clustering for lightning flash-cell identification

The problem of lightning flash-cells detection, viewed from
the perspective of using exclusively the lightning activity data,
presents itself as the problem of finding time-and-space data
clusters, which falls under the unsupervised machine learning
domain  [Goodman,  1990;  Peters  and  Meng,  2013;
Vasconcellos  at  al.,  2006].  The “scikit  learn” Python library
(http://scikit-learn.org/stable/index.html)  has  a  very  powerful
arsenal  of  clustering  algorithms,  from  a  simple  K-Means
algorithm  to  the  very  sophisticate  DBSCAN  algorithm
(including its  hierarchical  HDBSCAN version).  Furthermore,
clustering  algorithms  can  execute  in  parallel  on  multi-core
processor architectures, can operate in different metric spaces,
can automatically  eliminate outliers,  and offer  fine-tuning of
hyper-parameters  using  (randomized)  grid  search  and  cross-
validation.

Lightning  flash-cells  detection  starts  by  first  aggregating
time-series  lightning  data  in  10-minute  intervals,  and  then
searching for spatial clusters within these time windows. Large
ratio of CC to CG lightning within these moving windows is a
strong  indicator  of  lightning  flash-cell  formation.  Fig.  7
presents an example of the time-series lightning data analysis
with a 10-minute moving windows. Spatial, geometric clusters
of longitude-latitude lightning data, which can be identified, are
very often irregular in shape and of varying density. Hence,
sophisticate clustering algorithms are needed here, those which
can  cope  well  with  irregular  shape  and  varying  density  of
clusters. The HDBSCAN algorithm can be seen as very useful
in detecting and identifying lightning flash-cells as clusters of
data. Fig. 8 presents an example of three clusters which have
been identified using a HDBSCAN algorithm on a particular
10-minute interval lightning data.

Fig. 7. Time-series lightning data in a 10-minute moving window.

Fig. 8. Clustering lightning data using HDBSCAN algorithm.

It can be seen from the Fig. 8 that not all data points (i.e.
lightning strikes) have been associated with all clusters. This is
a strong feature of the HDBSCAN algorithm as such, which
automatically removes noise and data outliers. Also, lightning
flash-cells have been identified from the clusters of data using
the “convex hull” algorithm and visually presented in Fig. 8 as
well. The “shapely” Python library has a useful set of functions
(http://toblerity.org/shapely/manual.html)  for  creating  convex
hulls  and  manipulating  different  planar  shapes  (intersection,
union, translation, interaction, etc.). 

Another  feature  of  the  hierarchical  algorithms is  the  so-
called  dendrogram,  which  can  visually  represent  subtle
hierarchical structure that can be found within the geographical
lightning data. Fig. 9 presents a “dendrogram plot” of the data
from the Fig. 8. It can be seen that different number of clusters
emerge at different distance measures, and that three clusters
can be distinctly identified (from the length of the stems).

http://toblerity.org/shapely/manual.html
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Fig. 9. Dendrogram plot of the lightning data from Fig. 8.

Geographical  distributions  of  lightning  strike  locations
(within the time windows of interest), which is important for
the  lightning  flash-cell  identification,  often  exhibit  subtle
hierarchical structures,  particularly when very large areas are
scrutinized [Campos and Pinto, 2007]. This structure within the
data can be visualized using the dendrograms and clusters can
be  positively  identified  (even  the  structure  within  the  main
clusters  can  be  visualized  and  associated  with  particular
distance  measures).  Dendrograms  are  readily  available  from
the extensive “Scipy” Python library (www.scipy.org),  along
with  additional  functions  for  hierarchical  data  analysis  and
clustering.  When  the  information  from  the  dendrogram  is
further combined with, e.g. “silhouette score” analysis, it can
provide valuable insights into the structure of the flash-cells
and their mutual interactions.

E. Lightning flash-cell tracking and nowcasting

Tracking  of  lightning flash-cells  is  a  very  complex  task,
which  involves  identifying  cells  between  successive  time
windows, as well as allowing for the cells to split and merge,
to die (i.e. disappear), and for new cells to be born [Dixon and
Wiener,  1993;  Johnson at  al.,  1997;  Steinacker  et  al.,  2000;
Kalinis  et  al.,  2005;  Betz  et  al.,  2009].  This  can  be  rather
difficult,  and  different  algorithms  have  been  proposed  by
various authors, with varying degrees of both complexity and
success  rate  in  tracking  the  flash-cells.  A  path  of  the  cell
movement is usually formed by connecting the centers of the
convex hulls, which geometrically represent flash-cell in each
time window [Peters and Meng, 2013].

Nowcasting of flash-cells, on the other hand, is concerned
with predicting their position in the near future (i.e. during the
several successive time windows), using the existing data from
the  past.  In  other  words,  nowcasting  is  the  short-term
forecasting of the flash-cell movement and position [Johnson et

al., 1997; Betz at al., 2008; Peters and Meng, 2013]. Several
algorithms have been  proposed for  this task as  well,  having
various degrees of complexity and success rate. 

One simple algorithm for lightning flash-cells nowcasting
has  been  proposed  in  the  work  of  Peters  and  Meng [2013],
which has been applied here. No attempt at detection of flash-
cell  split  and  merge  conditions  has  been  attempted.
Furthermore,  a  time-weighted  linear  least-squares  regression
(WLS)  analysis  has  also  been  performed,  and  its  results
superimposed  on  the  identified  flash-cell  path,  for  the
forecasting  of  the  direction  of  the  possible  flash-cell  track
during nowcasting. 

Fig. 10 presents results of the tracking and nowcasting of a
single  flash-cell,  using the algorithm from Peters  and Meng
[2013] and the WLS analysis. A combination of several Python
libraries has been employed in producing Fig. 10. The shaded
cone in Fig. 10 presents the most probable location of the flash-
cell center for a future 10-minute time window (dark shaded
cone  is  obtained  with  a  single  standard  deviation  of  the
predicted position, while light shaded cone takes into account
two standard deviations). Red line is obtained by connecting
centers of the convex hulls (red dots), from several successive
time windows,  where  each  convex hull  represents  the  same
flash-cell in different time instants. Area of the convex hull and
its density changes with time, but there is no split or merge of
the cell (it has a stable life with a distinct path). Solid blue line
identifies a path from the WLS analysis of recorded positions
of convex hull centers, while dash and dash-dot paths provide
95% confidence and prediction intervals,  respectively.  In the
WLS  analysis,  more  recent  cell  positions  are  given  higher
weights than the older ones (i.e.  exponential weighting of data
in the time domain).

Fig. 10. Tracking and nowcasting of lightning flash-cell.

F. Interactive lightning data visualization

Interactive visualization and analysis of lightning data can
be  easily  accomplished  using  the  “folium”  Python  package
(https://github.com/python-visualization/folium),  that  is  based
on  the  extensive  “leaflet”  JavaScript  library.  Folium  API
provides access  to GeoJSON objects and shapefiles  (popular
geospatial  vector  data  format  for  geographic  information
system software). 

https://github.com/python-visualization/folium
http://www.scipy.org/


III. CONCLUSION

This paper briefly introduced application of several third-
party Python (programming language) libraries, which could be
seen as useful for easy and efficient manipulation and analysis
of data produced by the lightning detection networks (LDNs).
Python  is  a  high  level  interpreted  language  with  extensive
library of third-party packages and APIs. At the time of this
writing,  Python  ecosystem  features  over  125,000  packages
(according to the PyPI repository) and is increasing rapidly. Its
open source nature,  very generous  licensing terms, beautiful
syntax, flexibility, and adaptability (support for both functional
and object-oriented programming), along with a wide adoption
by  the  data  science  community,  resulted  with  its  extremely
rapid (and even unprecedented) growth in both user and code
bases.  Several  of  its  libraries,  popular  within the larger  data
science community, could be seen as very useful for efficient
analysis of data produced by LDNs. These include libraries for
time-series  data  analysis,  libraries  for  geographical  and
geometrical  data  analysis,  libraries  for  advanced  statistical
modeling,  data  mining,  and  building  sophisticate  machine
learning  models  (unsupervised  clustering  domain).  It  also
includes libraries for creating beautiful and interactive visuali-
zations  of  lightning  data,  as  well  as  different  kinds  of
specialized plots, such as: box and violin statistical plots, stem
plots,  polar  plots,  windrose  plots,  probability  and  QQ plots,
histograms, dendrograms, cluster visualizations, density maps,
cartographic projections of data, and other kinds of sophisticate
data visualizations. It further includes libraries for specialized
data access and manipulation, such as: HDF5, GeoJSON, and
Shapefiles.  Finally,  it  provides  APIs  for  accessing  Amazon,
Spark, and Hadoop clusters, as well as for harnessing power of
NVIDIA graphics  processors  with a  CUDA platform (using
PyCUDA). This enables streamlined access and fast processing
of massive amounts of data.

APPENDIX 

This paper is accompanied by a Jupyter Notebook which
contains  Python  source  code.  Notebook  features  analysis  of
lightning activity,  geographical  lightning density distribution,
kernel density estimation of amplitudes probability distribution,
wind farm lightning incidence analysis, clustering analysis for
lightning  flash-cells  identification,  flash-cell  tracking,  and
nowcasting.  It  can  be  freely  accessed  at  the  following link:
https://nbviewer.jupyter.org/github/sarajcev/linet-lightning/blo  
b  /  master/lightning.ipynb    
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