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1. INTRODUCTION

Lightning detection networks measure the radiated im-
pulse from the discharge; and report the stroke in terms of:
the time, a computed stroke location, a measure of confi-
dence often in the form of an ellipse, a measure of fit quality,
and stroke type classification. Network performance is often
assessed by two metrics: location accuracy and detection ef-
ficiency.

Location accuracy is often assessed by computing the
mean of the major confidence ellipse length, although ground
truth verification studies have determined that the location er-
ror may be less than the mean length. Ground truth stud-
ies include rocket triggered work by Jerauld et al. (2005),
video work by Biagi et al. (2007), and still camera work by
Liu et al. (2011). Similarly detection efficiency is often as-
sessed through video studies, for example the work of Biagi
et al. (2007).

Type classification is a parameter assigned to a detected
lightning stroke, and indicated if the stroke is intracloud (IC),
or cloud-to-ground (CG). Unlike the measure of position, peak
current and type classification are not assigned any measure
of confidence. An error may be assigned to the estimation of
peak current, which is estimated from the range normalised
signal strength of the peak of the vertical component of the
electric field (Cummins et al. (1998), Orville (2008)): the er-
ror in position does contribute to the error in the estimation,
but this contribution is very small. The type classification as-
signed to a stroke is derived from the rate of change of the
electric field (Rakov and Uman (2003)), but no account of
channel geometry is made.

a. Misclassification

The misclassification problem is well understood and much
work has been done since the problem was first noticed in
the 1995/1994 upgrade of the U.S. National Lightning De-
tection Network (Cummins et al. (1998); Wacker and Orville
(1999a,b); Jerauld et al. (2005); Orville et al. (2002); Cum-
mins et al. (2006); Biagi et al. (2007)). The problem is that

Corresponding author address: Michael D. Grant, University of the Wit-
watersrand, Johannesburg, South Africa Private bag x3, Johannesburg,
2050, South Africa.
E-mail: michael.grant@wits.ac.za

small peak current positive strokes are often assigned the
type classification of cloud-to-ground when in fact these are
more likely to be intracloud discharges. In 1998 it was pro-
posed that positive cloud-to-ground strokes with peak cur-
rents less than 10 kA are discarded, or at least reclassified
as intracloud strokes.

A video study by Biagi et al. (2007) a decade later formed
the basis of increasing the positive cloud-to-ground reclassifi-
cation limit by 5 kA to 15 kA. A lower theoretical limit for peak
current positive discharges has not yet been established and
while various video studies have confirmed the presence of
misclassified strokes, correctly classified strokes below either
of the reclassification limits are also found.

The presence of misclassified strokes in other data sets
(negative cloud-to-ground, and intracloud; and positive intra-
cloud) has not been directly assessed.

b. Southern African Lightning Detection Network

The data in this paper are from the Southern African Light-
ning Detection Network (SALDN). This IMPACT (Cummins
et al. (1998)) type network consists of 25 LS7000 and LS7001
sensors distributed throughout the Republic of South Africa,
and the Kingdom of Swaziland. The locations of the sensors
is shown in Figure 1.
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Figure 1: Political map of southern Africa, showing the loca-
tion of the SALDN sensors
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Figure 2: Discrete probability density functions computed
from the cloud-to-ground data set.

The period of the data is from August 2007 to March 2010;
a period before the sensors were moved or added to the
network. The 2010/2011 upgrade to the SALDN consisted
of adding several sensors and moving others to reduce the
baseline distances between the sensors.

2. STATISTICAL DISTRIBUTION OF LIGHTNING STROKES

Histograms for the four polarity-type data sets ([negative;
positive] ∩ [intracloud; cloud-to-ground]) are computed in 2 kA
bins from the peak current estimate of every stroke in each
data set. The notion of a direct measurement of peak current
of intracloud discharges is absurd, and in this analysis peak
current data is from the magnitude of the vertical component
of the electric field that has been converted to a peak current
estimate (by the network) using the range normalised signal
strength method.

The histograms may be converted to probability density
functions by dividing each bin of the histogram by the total
number of strokes in each data set. No strokes have been
reclassified or discarded.

a. Cloud-to-ground

The cloud-to-ground histograms are shown in Figure 2,
along with the 1998 and 2009 reclassification limits. Cur-
rent literature suggests that the reclassification limits should
only be applied to the positive cloud-to-ground data set, and
through inspection of the resulting probability density function
it is obvious that the most probable peak current assigned a
type classification of positive cloud-to-ground should be re-
classified.

Unlike the negative cloud-to-ground data set, which is uni-
modal at 10 kA, the positive cloud-to-ground data set is bi-
modal: the first and most significant mode occurs at 6 kA (be-
low both reclassification limits) and the second mode occurs
at 18 kA (above both reclassification limts).
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Figure 3: Discrete probability density functions computed
from the intracloud data set.

b. Intracloud

Both of the intracloud distributions are unimodal, with the
positive distribution mode at 6 kA and negative distribution
mode at 8 kA. The region of the positive intracloud distribu-
tion between 2 kA and 10 kA has the same shape as that of
the positive cloud-to-ground data set. There is also discon-
tinuity in the positive intracloud distribution at 16 kA where
the gradient changes abruptly. There are few similarities be-
tween the negative distributions, with obvious differences in
the kurtosis between the two.

The established fact that the positive cloud-to-ground dis-
tribution contains many misclassified strokes in the region
below 15 kA and the similarity in the shapes hints at some
common underlying process.

3. DECOMPOSED DISTRIBUTIONS

The author has proposed that each distribution consists of
the sum of two distinct distributions: that of the correctly clas-
sified component and that of an incorrectly classified com-
ponent (Grant et al. (2012)). These distributions have been
shown to vary independently of each other and indeed the
components corresponding to intracloud discharges precede
(by between 10 to 30 minutes) the cloud-to-ground compo-
nents (Grant (2010)). The method used to compute the sep-
arate distributions is the particle swarm optimisation of the
resulting 6 dimensional problem.

a. Cloud-to-ground

Figures 4a and 4b show the fitted distributions describing
the misclassified (intracloud) component, which is given by
a gamma distribution; and the correctly classified (cloud-to-
ground) component, which is given by a Cauchy distribution.

Particularly in the case of the unimodal negative cloud-to-
ground distribution, the sum of the two distributions provides
a better description than a single classic log-normal distribu-
tion (Grant (2010)).
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(a) Positive cloud-to-ground.
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(b) Negative cloud-to-ground
Figure 4: Fitted continuous distributions to the cloud-to-ground probability mass functions.
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(a) Positive intracloud
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(b) Negative intracloud
Figure 5: Fitted continuous distributions to the intracloud probability mass functions.
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(a) Positive cloud-to-ground
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(b) Negative cloud-to-ground

Figure 6: Type classification confidences for cloud-to-ground
data sets.

b. Intracloud

Figures 5a and 5b show the fitted distributions to the intr-
acloud data set. In these cases the misclassified component
is the cloud-to-groud component given by the Cauchy distri-
bution, and the correctly classified component is given by the
gamma distribution.

4. ASSESSING MISCLASSIFICATION

A confidence for the type classification assignment may
be computed by comparing the contribution, at a particular
current, of the correctly classified component to the mea-
sured probability mass function:

c(i) =
p(i)

T (i)
(1)

Where c(i) is the confidence at a particular current, i, p(i)
is the contribution of the correctly classified component, and
T (i) is the probability mass function.

The resulting type classification confidence functions for
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(a) Positive intracloud
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(b) Negative intracloud

Figure 7: Type classification confidences for intracloud data
sets.

cloud-to-ground discharges are shown in Figure 6, and intra-
cloud discharges in Figure 7. The reclassification limits have
been included for reference.

For the positive cloud-to-ground data set, there is almost
complete confidence in the type classification assigned to
strokes with peak currents above 15 kA. The 50% confidence
level corresponds to the 10 kA reclassification limit. There is
almost an inverse function for the positive intracloud data set,
where strokes with peak currents above 15 kA are almost cer-
tainly misclassified. The 10 kA reclassification limit roughly
corresponds to a 60% confidence.

The negative cloud-to-ground confidence function is sim-
ilar to the positive cloud-to-ground function in that there is
decreasing confidence below the reclassification limits. How-
ever the function is much wider with a longer tail. There-
fore for currents with peak currents between 15 kA and 30 kA
There is still some doubt about the type classification as-
signed. The intracloud function is not the inverse of the cloud-
to-ground function, but is still long tailed. The region of high
classification confidence is small (between 2 kA and 18 kA).
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5. CONCLUSION

The simple reclassification of strokes with small positive
peak currents below a threshold does discard some correctly
classified strokes. The application of this hard limit ultimately
results in some information loss, and in order to better un-
derstand the extent of this information loss type classifica-
tion performance must be assessed. The results in this pa-
per show that there is no sudden cut off of the misclassifica-
tion problem, nor is the problem only confined to the positive
cloud-to-ground data set.

A new measure, that of type classification confidence, has
been introduced. This measure provides a means to select
data above a certain confidence level; instead of applying a
hard limit. It is also proposed that this method is also ap-
plied to the other three data sets, where the misclassification
problem has not been addressed.
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