Lightning \(\text{NO}_x \) Production Per Flash based on OMI \(\text{NO}_2 \) Observations and Ground Network Lightning Data

Kenneth Pickering
Atmospheric Chemistry and Dynamics Laboratory
NASA Goddard Space Flight Center
Greenbelt, Maryland USA
Kenneth.E.Pickering@nasa.gov

Dale Allen, Allison Ring
Department of Atmospheric and Oceanic Science
University of Maryland
College Park, Maryland USA

Eric Bucsela
SRI, International
Menlo Park, California USA

Amitabh Nag, Ron Holle
Vaisala, Inc.

Abstract— Lightning production of nitrogen oxides (NO\(_x\)) in the middle and upper troposphere contributes significantly to the production of ozone which is an important greenhouse gas in this region of the atmosphere. Improved estimates of the lightning NO\(_x\) (LNO\(_x\)) produced per flash are imperative to determine the natural source strength of NO\(_x\) and ultimately upper troposphere ozone. An algorithm to derive LNO\(_x\) from data observed by the Ozone Monitoring Instrument (OMI) onboard NASA’s Aura satellite has been developed. Key elements of the algorithm include subtraction of the stratospheric and tropospheric background components from the total column NO\(_2\), and the use of an air mass factor appropriate for LNO\(_x\) to convert the satellite-measured slant column amount to a vertical column amount.

Daily data sets containing OMI LNO\(_x\) estimates on a 2 x 2.5 degree grid were generated for an initial study area, the Gulf of Mexico, and compared to lightning flash rates derived from ground network (e.g., GLD360) lightning data adjusted for detection efficiency relative to the Optical Transient Detector and Lightning Imaging Sensor (OTD/LIS). Estimates of LNO\(_x\) production per flash are generated using gridded total flashes for 6 hour periods prior to OMI overpass in conjunction with the OMI-based LNO\(_x\) fields. These estimates of LNO\(_x\) production in moles per flash are compared with literature values.

Keywords—nitrogen oxides, ozone, GLD360, OMI

I. INTRODUCTION

\(\text{NO}_2 \) and NO (together referred to as NO\(_x\)) are trace gases important in ozone chemistry in both the troposphere and stratosphere. Worldwide, anthropogenic emissions of NO\(_x\) dominate the NO\(_x\) budget. However, considerable uncertainty surrounds emission rates from natural sources (lightning and soil). Lightning is the largest non-anthropogenic source of NO\(_x\) in the free troposphere (hereafter, we refer to lightning-generated NO\(_x\) as LNO\(_x\)). Most estimates of global LNO\(_x\) production range from 2 to 8 Tg (N) yr\(^{-1}\) (Schumann and Huntrieser, 2007) or about 10–15% of the total NO\(_x\) budget. The effects of lightning are felt most strongly in the middle and upper part of the troposphere, where this source plays the dominant role in controlling NO\(_x\) and ozone amounts especially in the tropics and at midlatitudes in the summer, despite the greater overall magnitude of the anthropogenic NO\(_x\) emissions (R. Zhang et al., 2003). In this region, NO\(_x\) has a lifetime several times longer than the approximate 1-day lifetime in the lower troposphere so that a given amount of LNO\(_x\) in the upper troposphere can have a greater impact on ozone chemistry. Ozone is the third most important greenhouse gas (IPCC, 2007), and ozone enhancements near the tropopause have the greatest effect on its radiative forcing. Therefore, additional ozone produced downwind of thunderstorm events is particularly effective in climate forcing.

Two types of information are needed for estimating the global LNO\(_x\) source strength: the global flash rate and the production per flash. The global number of flashes is fairly well established as a result of climatologies constructed from
satellite sensors such as the Optical Transient Detector (OTD, 1995-2000) (Christian et al., 2003; Boccippio et al., 2000) and the Lightning Imaging Sensor (LIS, 1997 to present) (Christian et al., 2003; Boccippio et al., 2002; Mach et al., 2007). Therefore, the factor of 4 uncertainty in the range of global LNOx source strength stems primarily from uncertainty in the NOx production per flash. There have been several methods used to estimate this quantity: theoretical estimates, laboratory experiments, analysis of aircraft observations, cloud-resolving model simulations constrained by lightning flash observations and anvil NOx measurements, and analysis of satellite observations (see Table 1). Our group has employed the latter three of these methods in previous analyses of LNOx production. Under NASA-sponsored work, we have developed a preliminary algorithm for computing LNOx from OMI observations and have applied it for sets of tropical (Bucsela et al., 2010) and midlatitude convective storms. From Table 1 it can be noted that in general, estimates of average LNOx production per flash determined for midlatitude and subtropical thunderstorms tend to be larger than for tropical thunderstorms. Huntziers et al. (2008) have hypothesized that LNOx production per flash at midlatitudes may be larger than in the tropics due to greater vertical wind shear at higher latitudes, leading to greater flash lengths.

II. ALGORITHM

The Ozone Monitoring Instrument (OMI) is on NASA’s Aura satellite, which is part of NASA’s A-Train. It is in a sun-synchronous polar orbit, crossing equator at 1:30pm (LT). NO2 and other species are retrieved using UV/VIS radiance observations. OMI provided daily global coverage beginning in late 2004. However, a substantial number of the pixels in the field of view became blocked after 2008, reducing the coverage per day. The OMI pixel at nadir is 13 x 24 km; pixels become larger toward the edges of the orbital swath. The NASA standard product retrieval for NO2 (Bucsela et al., 2013) provides the total slant column amount of NO2 between the satellite and the earth’s surface, as well as stratospheric and tropospheric vertical column amounts. We have developed a special algorithm to retrieve the component of NO2 due to lightning and convert this to a vertical column of NOx.

\[\Omega_{\text{LNOx}} = \frac{\Omega_{\text{slant}} \times AMF_{\text{strat}} - \Omega_{\text{OMI}} \times AMF_{\text{strat}} - \Omega_{\text{BG}} \times AMF_{\text{trop}}}{AMF_{\text{LNOx}}} \]

In this equation Ω is the column amount (which can be either NOx or NO2). The stratospheric column (red) is based on mean OMI stratospheric NO2 from the standard algorithm for 4 days surrounding day of analysis. The tropospheric background (BG) column (green) is an estimate of the contributions of sources other than lightning to tropospheric column. We use the monthly mean tropospheric NO2 column from the standard algorithm as an approximation of the background. For both stratosphere and tropospheric background we use the air mass factors (AMF) supplied by the standard algorithm to convert the vertical columns to slant columns. AMFs result from radiative transfer modeling using an assumed NO2 profile, cloud information, and surface albedo. We consider all OMI pixels regardless of cloud amount. Following subtraction of the stratospheric and tropospheric background components in the numerator, we divide by an AMF for LNOx, which assumes a profile shape appropriate for LNOx (maximum in the upper troposphere). This AMF converts the slant column LNO2 to vertical column LNOx. The LNOx profile shape comes from gridded output from NASA’s Global Modeling Initiative (GMI) chemical transport model which was run with and without lightning. Profiles of LNOx are obtained by subtracting the profiles from the no-lightning simulation from those from the simulation with lightning. Our algorithm results in vertical LNOx columns for each OMI pixel.

For the purposes of our study, we sum the LNOx production over the 2 x 2.5 degree grid cells of the GMI model. We also make the assumption that lightning flashes occurring over the six hours prior to OMI overpass in a given grid cell contribute to the LNOx derived for that cell. These flash counts are derived from GLD360 observations (Demetriades et al., 2010; Said et al., 2013). Allen et al. (2014) describe how the detection efficiency of the GLD360 stroke data is determined relative to the OTD/LIS climatology. Detection efficiencies to convert observed GLD360 strokes to flashes were determined for each GMI grid cell as a function of time. For each grid cell on each day, we compute LNOx production per flash by dividing the LNOx from our algorithm by the number of GLD360 six-hour adjusted flashes in each grid cell.

III. RESULTS

We have obtained GLD360 data for a region over the Gulf of Mexico and its surroundings for the period from May 2011 through September 2013. We have analyzed the LNOx per flash in this region each day during July 2011, and have produced very preliminary results. Figure 1 shows maps of the 6-hour flashes (adjusted for detection efficiency) and the OMI LNOx for July 3, 2011. Large adjusted flash rates are seen over the Gulf of Mexico offshore from Louisiana, peaking at over 13,000 flashes in one grid cell in the six hours prior to OMI overpass. Substantial OMI LNOx per grid cell also is evident over a large area of the Gulf. A maximum of over 1000 kmoles LNOx per grid cell stretches southward from the Louisiana coastal area. Over the domain shown in Figure 1 the average LNOx production per flash on this day was 322.4 moles per flash. This value is within the range of LNOx production per flash seen in prior studies, such as those listed in Table 1.

Figure 2 shows similar maps for July 15, 2011 over the Gulf of Mexico. On this day two primary areas of adjusted GLD360 flashes are seen. One region stretches from Houston, TX eastward across Louisiana, and the second is off the east coast of Florida. LNOx is retrieved from OMI in both of these
regions. The maximum LNO\textsubscript{x} over the Atlantic east of Florida is over 3000 kmoles per grid cell and is located to the southeast of the flash maximum. Over the Gulf domain the mean LNO\textsubscript{x} production per flash on this day is 268.5 moles/flash, which is also comparable to many of the literature values.

However, on some days during July 2011, the mean LNO\textsubscript{x} production per flash is negative. Figure 3 shows an example of this type of occurrence on July 6, 2011. Strong flash and OMI LNO\textsubscript{x} maxima are indicated over southwestern Louisiana. However, the flash maximum over southern Florida is accompanied by negative values of LNO\textsubscript{x}. We are currently investigating the reason for this result from our algorithm. Two terms are subtracted from the total slant column NO\textsubscript{2} in the numerator. We do not believe that at the latitude range of the Gulf of Mexico in midsummer the stratospheric term is to blame for the negative results, as the stratosphere has weak gradients in this region at this time of year. More likely, it is the tropospheric background that has been poorly estimated over the highly populated area of southern Florida. The monthly mean OMI tropospheric NO\textsubscript{2} column may not have been representative of background on this day. Further investigation is in progress.

IV. SUMMARY

Very preliminary results of our analysis of OMI-based LNO\textsubscript{x}/flash in association with GLD360 adjusted flash rates for the Gulf of Mexico region have been obtained for the month of July 2011. During this month the LNO\textsubscript{x}/flash on a number of the days examined fell within the range of previous studies. However, we also obtain significantly negative values on some days. We are currently investigating the reasons why we see large negative values. The initial hypothesis is that we need a better method of estimate for the tropospheric background. We are also currently focusing on case studies of storms observed with aircraft NO\textsubscript{x} measurements during the 2012 Deep Convective Clouds and Chemistry (DC3). Comparisons of LNO\textsubscript{x} observed by aircraft with those from OMI should inform us of how to improve our algorithm.

ACKNOWLEDGMENT

This research is supported by the NASA Aura Science Team project.

REFERENCES

Allen, D., A. Ring, K. Pickering, A. Nag, R. Holle, R. Holzworth (2014) Analysis of Ground Network Lightning Data Relative to OTD/LIS to Derive Flash Rates for Use in Determining Lightning NO\textsubscript{x} Production from Satellite Observations, ILDC/ILMC, Tucson, AZ.

Beirle, S., N., et al. (2006), Estimating the NO\textsubscript{x} produced by lightning from GOME and NLDN data: A case study in the Gulf of Mexico, Atmos. Chem. Phys., 6, 1075–1089.

Beirle, S., H. Huntrieser, and T Wagner (2010), Direct satellite observation of lightning-produced NO\textsubscript{x}, Atmos. Chem. Phys., 10(22), 10965-10986, doi:10.5194/acp-10-10965.

Table 1. Some Literature Estimates of LNOx Production Per Flash

<table>
<thead>
<tr>
<th>Method</th>
<th>Moles NOx/flash (Notes)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical</td>
<td>1100 (CO), 110 (IC)</td>
<td>Price et al., 1997</td>
</tr>
<tr>
<td>Laboratory</td>
<td>~103</td>
<td>Wang et al., 1998</td>
</tr>
<tr>
<td>Aircraft data, cloud model</td>
<td>345-460 (STERAO-A)</td>
<td>DeCaria et al., 2005</td>
</tr>
<tr>
<td>Aircraft data, cloud model</td>
<td>360 (STERAO-A, EULINOX)</td>
<td>Ott et al., 2007, 2010</td>
</tr>
<tr>
<td>Aircraft data, cloud model</td>
<td>590-700 (CRYSTAL-FACE)</td>
<td>Ott et al., 2010</td>
</tr>
<tr>
<td>Aircraft data, cloud model</td>
<td>500 (Mean midlat. from model)</td>
<td>Ott et al., 2010</td>
</tr>
<tr>
<td>Aircraft data, cloud model</td>
<td>500 - 600 (Hector)</td>
<td>Cummings et al., 2013</td>
</tr>
<tr>
<td>Aircraft data</td>
<td>70-210 (TROCCINOX)</td>
<td>Huntrieser et al., 2008</td>
</tr>
<tr>
<td>Aircraft data</td>
<td>121-385 (SCOUT-O3 Darwin)</td>
<td>Huntrieser et al., 2009</td>
</tr>
<tr>
<td>Aircraft data</td>
<td>70-179 (AMMA)</td>
<td>Huntrieser et al., 2011</td>
</tr>
<tr>
<td>LMA/Theoretical</td>
<td>484 (CG), 34 (IC)</td>
<td>Koshak et al., 2013</td>
</tr>
<tr>
<td>Satellite (GOME)</td>
<td>32-240 (Sub-Tropical)</td>
<td>Beirle et al., 2006</td>
</tr>
<tr>
<td>Satellite (OMI)</td>
<td>87-246 (TC4 – tropical marine)</td>
<td>Buscela et al., 2010</td>
</tr>
<tr>
<td>Satellite (SCIAMACHY)</td>
<td>174 (TC4 mean from OMI)</td>
<td>Buscela et al., 2010</td>
</tr>
<tr>
<td>Satellite (SCIAMACHY)</td>
<td>440 (Central US, Gulf)</td>
<td>Pickering et al. (in prep)</td>
</tr>
<tr>
<td>Satellite (SCIAMACHY)</td>
<td>33-50 max. (global analysis)</td>
<td>Beirle et al., 2010</td>
</tr>
</tbody>
</table>