Installation Guide

Vaisala Optimus™ DGA Monitor for power transformers

OPT100
Table of contents

1. **About this document** ... 5
 1.1 Version information ... 5
 1.2 Related manuals .. 6
 1.3 Documentation conventions .. 6
 1.4 Trademarks .. 6

2. **Planning the installation** .. 7
 2.1 Installation safety .. 7
 2.2 Installation phases .. 8
 2.3 Required personnel .. 8
 2.4 Required materials .. 9
 2.5 Recommended tools ... 10
 2.6 Storing and transporting DGA monitor ... 11
 2.7 Reinstalling DGA monitor .. 11
 2.8 Installation site requirements ... 11
 2.8.1 Installation location of DGA monitor ... 12
 2.8.2 Recommended locations of oil connections .. 12
 2.8.3 Network security ... 14
 2.9 Regulatory compliances ... 14
 2.9.1 FCC Part 15 compliance statement .. 14
 2.9.2 Canada ICES-003 compliance statement ... 15

3. **Mechanical installation** ... 16
 3.1 Unpacking DGA Monitor ... 16
 3.2 Mounting with Ground Mounting Set .. 16
 3.2.1 Parts with Ground Mounting Set .. 18
 3.2.2 OPT100 dimensions with Ground Mounting Set .. 20
 3.3 Mounting with Wall Mounting Set .. 21
 3.3.1 Parts with Wall Mounting Set .. 22
 3.4 Installing oil lines .. 23
 3.5 Attaching power supply unit .. 27
 3.6 Attaching weather shield .. 27

4. **Electrical installation** .. 29
 4.1 Interior parts .. 29
 4.2 Cable glands and connectors .. 30
 4.3 Grounding DGA monitor .. 31
 4.4 Connecting DC power to DGA monitor ... 32
 4.5 Connecting relay control to power supply unit .. 35
 4.6 Connecting RS-485 serial line ... 38
 4.6.1 RS-485 termination and biasing ... 40
 4.7 Connecting Ethernet ... 41
 4.8 Connecting relays ... 42
 4.9 Connecting AC (mains) power ... 45
 4.10 Verifying tightness of cable glands .. 47
5. **Commissioning**

5.1 Turning on DGA monitor

5.2 Connecting to user interface

5.3 Changing administrator password

5.4 Configuring network connection

5.5 Configuring user interface security

5.6 Setting device name

5.7 Setting date and time

5.8 Initializing DGA monitor

5.9 Configuring autocalibration

5.10 Configuring Modbus protocol

5.11 Configuring DNP3 protocol

5.12 Configuring IEC 61850 protocol

5.13 Using protocol test mode

5.14 Configuring gas level alerts

5.15 Configuring relays

5.16 Starting measurement

5.17 Finalizing installation

6. **Installation report**

6.1 Site and device information

6.2 DGA monitor configuration report

6.3 Post-installation checklist

Index

Technical support

Warranty

Recycling
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Possible locations of oil connections</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Assembly of the mounting stand</td>
<td>17</td>
</tr>
<tr>
<td>Figure 3</td>
<td>OPT100 front parts with Ground Mounting Set</td>
<td>18</td>
</tr>
<tr>
<td>Figure 4</td>
<td>OPT100 rear parts with Ground Mounting Set</td>
<td>19</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Dimensions with Ground Mounting Set</td>
<td>20</td>
</tr>
<tr>
<td>Figure 6</td>
<td>OPT100 front parts with Wall Mounting Set</td>
<td>22</td>
</tr>
<tr>
<td>Figure 7</td>
<td>OPT100 rear parts with Wall Mounting Set</td>
<td>23</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Inside OPT100 DGA Monitor enclosure</td>
<td>29</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Inside OPTPSU1 Power Supply Unit enclosure</td>
<td>30</td>
</tr>
<tr>
<td>Figure 10</td>
<td>OPT100 DGA Monitor cable glands and connectors</td>
<td>30</td>
</tr>
<tr>
<td>Figure 11</td>
<td>OPTPSU1 power supply unit cable glands and connectors</td>
<td>31</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Terminal block Y3 wiring</td>
<td>33</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Terminal block X5 wiring</td>
<td>35</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Terminal block Y2 wiring</td>
<td>36</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Terminal block X4 wiring</td>
<td>37</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Terminal block Y1 wiring example</td>
<td>39</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Location of RS-485 repeater inside the DGA monitor enclosure</td>
<td>40</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Location of DIP switches on the RS-485 repeater</td>
<td>40</td>
</tr>
<tr>
<td>Figure 19</td>
<td>RJ45 connector inside the protection shell</td>
<td>42</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Terminal block X3 example wiring for normally open (NO) connection</td>
<td>44</td>
</tr>
<tr>
<td>Figure 21</td>
<td>Terminal block X1 wiring</td>
<td>47</td>
</tr>
<tr>
<td>Figure 22</td>
<td>Changing administrator password</td>
<td>50</td>
</tr>
<tr>
<td>Figure 23</td>
<td>IP address settings page</td>
<td>51</td>
</tr>
<tr>
<td>Figure 24</td>
<td>Network security settings page</td>
<td>52</td>
</tr>
<tr>
<td>Figure 25</td>
<td>General settings page</td>
<td>53</td>
</tr>
<tr>
<td>Figure 26</td>
<td>Date and time settings page</td>
<td>54</td>
</tr>
<tr>
<td>Figure 27</td>
<td>Autocalibration page</td>
<td>59</td>
</tr>
<tr>
<td>Figure 28</td>
<td>Modbus settings page</td>
<td>60</td>
</tr>
<tr>
<td>Figure 29</td>
<td>DNP3 settings page</td>
<td>61</td>
</tr>
<tr>
<td>Figure 30</td>
<td>IEC 61850 settings page</td>
<td>63</td>
</tr>
<tr>
<td>Figure 31</td>
<td>Protocol test mode enabled</td>
<td>64</td>
</tr>
<tr>
<td>Figure 32</td>
<td>Alerts page</td>
<td>65</td>
</tr>
<tr>
<td>Figure 33</td>
<td>Relay settings page</td>
<td>66</td>
</tr>
</tbody>
</table>
List of tables

Table 1 Document versions (English)...5
Table 2 Related manuals..6
Table 3 Terminal block Y3 wiring...33
Table 4 Terminal block X5 wiring...35
Table 5 Terminal block Y2 wiring...36
Table 6 Terminal block X4 wiring...37
Table 7 Terminal block Y1 wiring...39
Table 8 DIP switch configuration of RS-485 output.....................................41
Table 9 Terminal block X3 wiring...44
Table 10 Terminal block X1 wiring...47
Table 11 Wiring...71
Table 12 Configuration...72
Table 13 Post-installation checklist...73
1. About this document

1.1 Version information

<table>
<thead>
<tr>
<th>Document code</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M211857EN-H</td>
<td>July 2020</td>
<td>Applicable from software version 1.11.0 onwards. Added sections:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring autocalibration (page 59)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Using protocol test mode (page 64)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated sections:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Initializing DGA monitor (page 55)</td>
</tr>
<tr>
<td>M211857EN-G</td>
<td>January 2020</td>
<td>Applicable from software version 1.9.0 onwards. Installation Verification chapter revised into an Installation Report with the following sections:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Site and device information (page 69)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DGA monitor configuration report (page 71)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Post-installation checklist (page 73)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other added sections:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Network security (page 14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• RS-485 termination and biasing (page 40)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated sections:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Required materials (page 9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Recommended locations of oil connections (page 12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Installing oil lines (page 23)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Connecting Ethernet (page 41)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring Modbus protocol (page 60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring DNP3 protocol (page 61)</td>
</tr>
<tr>
<td>M211857EN-F</td>
<td>June 2019</td>
<td>Applicable from software version 1.8.0 onwards. Added sections:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring user interface security (page 52)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Setting device name (page 53)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated sections:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring DNP3 protocol (page 61)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Changing administrator password (page 50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DGA monitor configuration report (page 71)</td>
</tr>
</tbody>
</table>
1.2 Related manuals

Table 2 Related manuals

<table>
<thead>
<tr>
<th>Document code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>M211858EN</td>
<td>OPT100 User Guide</td>
</tr>
</tbody>
</table>

1.3 Documentation conventions

WARNING! Warning alerts you to a serious hazard. If you do not read and follow instructions carefully at this point, there is a risk of injury or even death.

CAUTION! Caution warns you of a potential hazard. If you do not read and follow instructions carefully at this point, the product could be damaged or important data could be lost.

Note highlights important information on using the product.

Tip gives information for using the product more efficiently.

Lists tools needed to perform the task.

Indicates that you need to take some notes during the task.

1.4 Trademarks

OPTIMUS™ is a trademark of Vaisala Oyj.

All other product or company names that may be mentioned in this publication are trade names, trademarks, or registered trademarks of their respective owners.
2. Planning the installation

2.1 Installation safety

WARNING! Read the product documentation carefully before installing or operating the product. If you encounter the following marking during installation or operation, consult product documentation to find out the nature of the potential hazards and any actions which have to be taken to avoid them:

WARNING! Only licensed experts may install electrical components. They must adhere to local and state legislation and regulations.

WARNING! Make sure that you prepare and connect only de-energized wires.

WARNING! Keep away from live circuits. Operating personnel must observe safety regulations at all times.

WARNING! Ground the DGA monitor enclosures as instructed in the wiring instructions. Verify the grounding before and after performing maintenance on the unit.

CAUTION! Do not modify the DGA monitor or use it in ways not described in the documentation. Modifications may lead to safety hazards, equipment damage, failure to perform according to specification, or decreased equipment lifetime.
Surfaces inside DGA monitor that are marked with the symbol below heat up during normal operation. Avoid touching hot surfaces and wear protective gloves when working inside the enclosure. Whenever possible, allow the DGA monitor to cool down before starting the work.

CAUTION! Surfaces inside DGA monitor that are marked with the symbol below heat up during normal operation. Avoid touching hot surfaces and wear protective gloves when working inside the enclosure. Whenever possible, allow the DGA monitor to cool down before starting the work.

Wear protective eyewear and gloves.

Follow the safety regulations of the installation site.

The safety of any system incorporating this equipment is the responsibility of the assembler.

2.2 Installation phases

Perform the installation of the DGA monitor in the following phases:

- Planning
- Mechanical installation
- Electrical installation
- Commissioning
- Installation reporting

These phases correspond to chapters of the Installation Guide. Post-installation checklist is included as part of the installation report template. See Post-installation checklist (page 73).

2.3 Required personnel

Installation of the DGA monitor requires two persons. While most of the installation and commissioning tasks can be done by a single person, safe carrying and lifting of the DGA monitor requires two persons.

Installers must have the necessary training to legally perform all required tasks. For example, connecting the DGA monitor to mains power must be done by a licensed electrician.
Applicable legislation and site safety guidelines may require additional personnel to be present in the installation.

2.4 Required materials

In addition to the items delivered by Vaisala, installation of the DGA monitor requires various materials that you must supply yourself.

Items delivered by Vaisala

- DGA Monitor (Vaisala item OPT100)
 - DGA Monitor enclosure
 - Swagelok® plugs for oil connector fittings (2 pcs, Swagelok part no. SS-10M0-P (316 Stainless Steel Plug for 10 mm Swagelok Tube Fitting))
 - Protection shell for RJ45 Ethernet connector
 - Relay control cable (marked RELAY, Vaisala cable CBL210539)
 - Enclosure key
- Power Supply Unit (Vaisala item OPT100PSU)
 - Power Supply Unit enclosure
 - DC power cable (Vaisala cable CBL210544)
 - Enclosure key

Optional items (must have either Wall Mounting Set or Ground Mounting Set):

- Wall Mounting Set (Vaisala item OPTMSET1)
 - Installation beam (2 pcs)
 - Cradle for Power Supply Unit
 - Screws and washers
- Ground Mounting Set (Vaisala item OPTMSET2)
 - Mounting stand (delivered in three parts)
 - Wedge anchors (6 pcs) for securing the mounting stand to ground
 - Screws, washers, and nuts
- Weather Shield (Vaisala item OPTSHLD1)
 - Weather shield (delivered in three parts)
 - Screws and washers
- Tubing adapter, 10 mm to 3/8" (2 pcs, Vaisala item ASM213275SP)
- Tubing adapter, 10 mm to 1/4" (2 pcs, Vaisala item ASM213274SP)

DGA monitor installation and commissioning

Not supplied by Vaisala.

- Grounding cable with max 16 mm² (AWG5) conductor. Enough to reach from the DGA monitor and the power supply unit to the grounding point(s).
• AC power cable with 2.5 mm² (AWG10) wires and 9 ... 16 mm (0.35 ... 0.63 in) external diameter. Must be compliant with local regulations for mains power cables.
• Relay cable
• RS-485 cable
• Shielded outdoor Ethernet cable with a RJ45 connector for the permanent Ethernet connection
• Laptop computer with:
 • RJ45 Ethernet connector
 • Web browser (Google Chrome™, Microsoft Internet Explorer®, or Mozilla Firefox®)
• Ethernet cable with RJ45 connectors for temporary use

Oil pipe construction

Not supplied by Vaisala.

The amount of required oil pipe construction materials depends on the intended pipe length. Two pipes are needed, one for intake and one for returning the oil. Using the recommended pipe material, the maximum allowed length of a single pipe is 10 m (33 ft). If you are using a smaller pipe (minimum inner diameter 4 mm (0.157 in)), the maximum length is 5 m (16 ft).

• Recommended oil pipe material: stainless steel tubing with 10 mm (0.39 in) outer diameter and 1 ... 1.5 mm (0.039 ... 0.059 in) wall thickness. Enough to connect the oil intake and return valves to the DGA monitor.
• Adapters for connecting the oil pipes to the valves on the transformer
• Adapters for connecting the oil pipes to the DGA monitor, if not using the recommended tubing size (10 mm (0.39 in) outer diameter). Optional accessories for connecting 3/8” and 1/4” outer diameter tubing are available from Vaisala.
• Pipe fittings for joining pipe sections
• Pipe supports
• Oil pipe insulation (if necessary due to cold climate)
• Oil absorption material for controlling possible leaks
• Rags for wiping off oil

Other

Not supplied by Vaisala.

• Personal safety equipment as required by installation site and applicable legislation

2.5 Recommended tools

Hand tools

• Slotted and crosshead screwdrivers
• Wrenches of various sizes
• Socket wrench and socket set
• Allen keys
• Cutting tools
• Cable stripping tool
• Metal file
• Measuring tape
• Impact drill and bits
• Spirit level
• Multimeter

Tools for oil pipe construction

• Pipe bending tool
• Pipe cutting tool
• Pipe deburring tool
• Pressurized air, either a bottle or a compressor
• Container for waste oil with at least 5 liter (1.32 gal) capacity

2.6 Storing and transporting DGA monitor

Keep the DGA monitor and any installation accessories in their original packaging during storage and transport. Keep the items dry and in conditions allowed by the storage specification. Follow any handling instructions marked on the outside of the packaging.

After installation, store the packaging in a dry place. You can reuse it for storage and transport later.

2.7 Reinstalling DGA monitor

If you want to relocate an already installed DGA monitor, you must prepare it for transport and reinstalation by following the uninstallation procedure. See *OPT100 User Guide* for details.

2.8 Installation site requirements

DGA monitor can be installed and successfully operated in a wide variety of environments. Note the following special considerations:

- **Cold environments**: Trace heating elements and thermal insulation may need to be placed over the exposed sections of the oil pipes. Required heating power and insulation thickness depends on the pour point of the transformer oil that is used. Temperature of the oil in the lines must exceed the pour point with a reasonable margin in order to keep the oil flowing normally during operation.
- **Hot environments**: Weather shield installation option will reduce the solar radiation load on the DGA monitor. Consider placing the DGA monitor in a location that is not exposed to direct sunlight.
- **Operating altitude**: DGA monitor is intended for use in altitude range -1000 ... 3000 m.

If you have any questions, contact Vaisala for more information.
Performing a site inspection in person is a good idea. Take photographs of the intended installation location, oil connections, and electrical connections. Measure the amount of cable and oil pipe needed.

2.8.1 Installation location of DGA monitor

DGA monitor can be attached to the transformer chassis or to its immediate vicinity. The location must fulfill the following requirements:

- The location must be close to the oil connections to minimize the length of the oil lines. The maximum length of the lines is 10 m (33 ft) each.
- The location must be safely accessible from the floor without the need to climb or reach.
- There must be enough room and suitable supporting structures to install the DGA monitor in a vertical orientation. The DGA monitor must not be tilted more than 5 degrees.
- If the Ground Mounting Set is used, there must be a level concrete surface that is at least 100 mm thick.

If you have many suitable locations, prefer the following:

- Locations that are protected from rain and solar radiation.
- Locations where the vibration and heat from the transformer are not directly conducted to the DGA monitor.

2.8.2 Recommended locations of oil connections

DGA monitor needs to pump oil out of the transformer and return it after each measurement cycle. It is important that the oil is clean and from a representative location in the transformer, and the same oil volume is not measured repeatedly.

The oil volume needed for a single measurement cycle is slightly more than one liter. To make it possible to pump a new sample and return the measured oil without mixing them up, you must build two oil lines between the DGA monitor and the transformer. Consider the following when selecting the locations of the oil connections in the transformer and preparing for the installation:

- The recommended arrangement is to use two valves in different locations on the transformer. This improves oil circulation inside the transformer and prevents the returned oil from immediately mixing with the next sample.
- Use the same valve for oil intake that has been previously used to take oil samples. This makes the measurements results of the DGA monitor more comparable with previous laboratory analysis results. After the oil lines are connected, you will not be able to take oil samples from the valves. Consider adding a new sampling valve to the intake oil line if you need to continue taking oil samples.
- Check if the transformer circulates its oil by forced convection. Oil flow inside the transformer makes the sampled oil more representative of the overall oil volume. It is also useful if you have to use two valves that are close together, as it carries the returned oil away from the valve.
- It is possible to use a T-joint to connect both lines to a single valve but the T-joint must be close to the transformer – no farther than one meter (3 ft) from the valve. If a T-joint is used, the transformer should be of a type that circulates its oil.
• Check the type of connection thread on the valves, and make sure you have appropriate adapters for connecting the oil lines to the valves.
• The maximum allowed length of an oil line is 10 m (33 ft).

Some typically available locations of oil connections are presented in Figure 1 (page 13).

Figure 1 Possible locations of oil connections

1 Oil reservoir. Do not use.
2 Side of the oil tank, top level. Suitable location for oil connection if the valve is under oil level at all times.
3 Side of the oil tank, high enough from the bottom to enable proper oil movement. Suitable location for oil connection.
4 Radiator and its pipes. Suitable location if there is guaranteed continuous oil flow in the radiator. Not recommended if there is no forced circulation or circulation is not continuous.
5 Drain valve of the oil tank. Not recommended due to risk of sludge and free water. Measurement from the bottom of the tank is also not representative for moisture measurement.

CAUTION! Operate the selected valves and make sure the oil is clean with no sludge or free water present.
DGA monitor needs to pump oil in both directions during initialization and maintenance. To make sure this is possible, check that:

- Intake and return valves are both **below oil level** in the transformer. There should be no risk of drawing gas into the oil lines even when the flow is reversed.
- There are no flow direction control valves on the oil lines.

2.8.3 Network security

DGA monitor is intended to be connected to a secure SCADA network that is appropriately protected against security threats. Do not connect the DGA monitor directly to the Internet. The second Ethernet port of the DGA monitor (marked **ETH1**) is for temporary local use only.

2.9 Regulatory compliances

OPT100 DGA monitor is in conformity with the provisions of the following EU directives:

- EMC Directive
- Low Voltage Directive

OPT100 is specifically designed to be installed as part of another type of equipment that is excluded from the RoHS directive (2011/65/EU) scope.

The conformity is declared with using the following standards:

- EN 61326-1: Electrical equipment for measurement, control, and laboratory use – EMC requirements – intended for use in industrial locations.
- EN 61010-1: Safety requirements for electrical equipment for measurement, control and laboratory use – Part 1: General requirements.

2.9.1 FCC Part 15 compliance statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

CAUTION! Changes or modifications to this equipment not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
2.9.2 Canada ICES-003 compliance statement

This Class A digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.
3. Mechanical installation

3.1 Unpacking DGA Monitor

- Wire cutters

Two persons are required to lift the DGA monitor out of the packaging.

1. Cut the packing straps and remove the cover.
2. Remove the top padding from the box.
3. Lift the DGA monitor out of the box and set it down on a stable surface so that the door side is on top.

CAUTION! The cable glands and oil connections of the DGA monitor are located on the bottom of the enclosure. When unpacking and moving the DGA monitor, avoid putting the bottom of the DGA monitor on the ground. Putting the weight of the unit on the cable glands and oil connections may damage them.

3.2 Mounting with Ground Mounting Set

- Ground Mounting Set (Vaisala item OPTMSET2)
 - Mounting stand (delivered in three parts)
 - Wedge anchors (6 pcs) for securing the mounting stand to ground
 - Screws, washers, and nuts
- 6-mm Allen key
- 13-mm wrench
- Impact drill and bits

Use the Ground Mounting Set when a free standing installation of the DGA monitor is needed. The mounting surface must allow the use of wedge anchors to secure the mounting stand. A concrete surface that is at least 100 mm thick is recommended.
Figure 2 Assembly of the mounting stand

1 Mounting holes on the top are for attaching the DGA monitor.
2 Mounting holes on the side join the parts of the mounting stand together.
3 Holes on the bottom (three on each side) are for anchoring the mounting stand to the ground.
4 Attach the power supply unit to the middle part using these four holes.

1. Assemble the mounting stand. Tighten the screws to finger tightness at this point, not all the way.
2. Using the assembled mounting stand as the template, mark the locations of the six anchors on the mounting surface.

3. Drill holes for the anchors using an impact drill and an 8 mm (.315 in) drill bit. The holes must be 60 mm (2.36 in) deep.

4. Install the anchors in the holes.

5. Attach the mounting stand to the anchors.

6. Verify that the mounting stand is securely anchored.

7. Attach DGA monitor to the top of the mounting stand.

8. Tighten the screws to 20 Nm tightness.

3.2.1 Parts with Ground Mounting Set

![Figure 3](image-url)

- **1** Status LEDs
- **2** OPT100 DGA Monitor
- **3** Door lock (3 pcs)
- **4** Power supply unit
- **5** Door lock
- **6** Mounting stand
- **7** Wedge anchors (6 pcs)
Figure 4 OPT100 rear parts with Ground Mounting Set

1 Weather shield
2 Cable glands and oil connections for DGA Monitor
3 Cable glands for power supply unit
3.2.2 OPT100 dimensions with Ground Mounting Set

Figure 5 Dimensions with Ground Mounting Set
3.3 Mounting with Wall Mounting Set

- Wall Mounting Set (Vaisala item OPTMSET1)
 - Installation beam (2 pcs)
 - Cradle for Power Supply Unit
 - Screws and washers
 - 6-mm Allen key

1. Attach one of the installation beams to the mounting location, at a height where you want the top of the OPT100 enclosure to be. Make sure it is securely attached from at least two points, and can bear the full weight of the DGA monitor.

2. Attach the second installation beam at the height of the second set of mounting holes.

3. Attach screws with washers to the top mounting holes of each pair on the sides of the OPT100 enclosure (four screws in total). Tighten them enough to safely bear the weight of the enclosure but not all the way in. The second hole of each set must remain free at this point.

4. With two people lifting, lift the OPT100 enclosure up and hang it from installation beams by the screws. If the lower installation beam is not at the correct height, re-attach it at the correct height before attempting this step again.

5. Tighten the four screws to secure the enclosure in place.

6. Add a second screw (with washer) below each of the installed screws, and tighten them. The enclosure is now secured to the installation beams by a total of eight screws.
3.3.1 Parts with Wall Mounting Set

Figure 6 OPT100 front parts with Wall Mounting Set

1 Status LEDs
2 OPT100 DGA Monitor
3 Door lock (3 pcs)
4 Power supply unit
5 Door lock
3.4 Installing oil lines

- Adapters for connecting the oil pipes to the valves on the transformer
- Adapters for connecting the oil pipes to the DGA monitor, if not using the recommended tubing size (10 mm (0.39 in) outer diameter). Optional accessories for connecting 3/8" and 1/4" outer diameter tubing are available from Vaisala.
- Recommended oil pipe material: stainless steel tubing with 10 mm (0.39 in) outer diameter and 1...1.5 mm (0.039...0.059 in) wall thickness. Enough to connect the oil intake and return valves to the DGA monitor.
- Pipe fittings for joining pipe sections
- Pipe supports
- Pipe bending tool
- Pipe cutting tool
- Pipe deburring tool
- Pressurized air, either a bottle or a compressor
- Wrenches of various sizes
- Container for waste oil with at least 5 liter (1.32 gal) capacity
CAUTION! When working with oil pipes, fittings, and adapters:

- Keep parts and tools clean and off the ground. Dirty parts may contaminate the transformer oil or cause connections to leak.
- Use new Swagelok® adapters (nuts and ferrules) when making new connections. Do not use third party adapters or used parts from a different connection. Opening and retightening existing oil line connections without changing the nuts and ferrules is OK as long as the parts appear intact and you can verify the connections do not leak. Swagelok part code for the included 10-mm pipe adapters is SS-10M0-NFSET.
- If you are unsure about the proper use of fittings and adapters, refer to their manufacturer’s instructions online.

If the DGA monitor is mounted using the wall mounting set, the power supply unit will be attached by a mounting cradle. Make sure you are not routing the oil lines so that they will obstruct the power supply unit attachment. See Attaching power supply unit (page 27).

Wear protective eyewear and gloves.

Before starting to install the oil lines, see Recommended locations of oil connections (page 12) for important information and recommendations.

1. Inspect and prepare the selected inlet and outlet oil valves on the transformer:
 a. If there are any flow direction control valves previously installed, remove them. The DGA monitor needs to pump oil in both directions during initialization, and this will not work if there are flow direction controllers in the oil lines.
 b. Clean any loose dirt from the outside and inside of the oil valves on the transformer.
 c. Drain some oil from the selected valves into the waste oil container. Verify that the oil is clean and there is no sludge coming out with the oil. If sludge is present, do not use that valve to connect the DGA monitor.

2. Install the adapters to the inlet and outlet valves on the transformer to match them to the size of the oil pipe material.

3. Measure the distance from the oil valves to the DGA monitor, and plan the length and shape of the oil pipe sections. Minimize the amount of joints.

4. Cut and bend the oil pipe to appropriate sections for building the oil lines.

5. Remove any sharp edges from the cut surfaces.

6. Clean any metal shavings from inside the pipes using pressurized air.
7. Build the oil lines between the valves and the oil connections on the DGA monitor marked Oil In and Oil Out.

CAUTION! Make sure that both oil connections on the transformer are below oil level. There must be no risk of drawing gas into the oil lines even when the flow is reversed.

8. Remove the plugs from the pipe fittings on the DGA monitor and store them for possible later use. Check that the fittings are clean.
9. Connect both oil lines to the fittings on the DGA monitor. Use the supplied Swagelok® adapters (delivered in a separate bag).
 a. Insert the nut of the adapter over the oil pipe.
 b. Insert the two ferrules over the pipe. Make sure they are in the order and orientation shown below.
 c. Push the pipe into the fitting on the DGA monitor and rotate the nut finger-tight.
 d. Mark the nut position.
 e. Hold the base of the oil fitting with a second wrench to keep it from turning when tightening.
 f. Tighten the nut 1 1/4 turns with a wrench.

If you are not using the recommended oil pipe size, install adapters into the oil connections first. Then connect the oil pipe to the adapter.

10. Install pipe supports where necessary to support the pipe mechanically. The pipe should be supported at least every two meters (six feet).

11. If necessary due to cold climate, install insulation over the oil pipes.
To verify that the oil connections are tight, check for leaks during commissioning when the DGA monitor is pumping oil. Ideally, check the connections again after the DGA monitor has been running for some time (for example, the next day).

3.5 Attaching power supply unit

- 6-mm Allen key

1. If the Ground Mounting Set is used:
 a. Attach the power supply unit to the middle of the mounting stand.
2. If the Wall Mounting Set is used:
 a. Attach the power supply unit to the cradle.
 b. Support the power supply unit and cradle and attach them to the bottom of the OPT100 enclosure.

3.6 Attaching weather shield

- Weather Shield (Vaisala item OPTSHLD1)
 - Weather shield (delivered in three parts)
 - Screws and washers
1. Attach the weather shield to the OPT100 enclosure:

 a. Attach the left side panel. Note that the panels have an assigned side, they are not identical.
 b. Attach the right side panel.
 c. Verify that all screws holding the side panels of the weather shield are tight.
 d. Attach the top panel.
4. Electrical installation

4.1 Interior parts

Figure 8 Inside OPT100 DGA Monitor enclosure

1 Valve 5 (bleed valve). Must be manually accessed during initialization and uninstallation.
2 Valve 4
3 Oil block
4 Valve 3
5 Valve 2
6 Valve 1
7 In-oil measurement of hydrogen and moisture
8 Oil out
9 Oil in
10 Terminal blocks for RS-485 output (Y1) and relay control (Y2)
11 Circuit breakers for DC power: main breaker (F2) and breaker for heating power (F1)
12 Terminal block for DC in (Y3)
13 Surge arresters
14 Ethernet connectors:

ETH0 Connection for SCADA, wired to external Ethernet connector
ETH1 Service port for temporary local use, with IP address 192.168.28.2
15 Processing unit
16 Control unit
17 Optical measurement module for extracted gases
4.2 Cable glands and connectors

1. **Oil Out**: connection for oil return line
2. **Oil In**: connection for oil intake
3. **Ground terminal**
4. **RS-485**: cable gland for RS-485 connection
5. **Relay control out**: cable gland for relay control to power supply unit
6. **DC in**: 24 VDC connection from power supply unit
7. **Ethernet**: external RJ45 connector for permanent Ethernet connection
Figure 11 OPTPSU1 power supply unit cable glands and connectors

1 Ground terminal
2 AC in: Mains power input. 100 ... 240 VAC, 50 ... 60 Hz, 10 A
3 Spare
4 Spare
5 Relay out: Relay output. Max 250 VAC, 10 A
6 Relay control in: Relay control from DGA monitor
7 DC out: DC out to DGA monitor. 24 VDC, 20 A

4.3 Grounding DGA monitor

- Grounding cable with max 16 mm² (AWG5) conductor. Enough to reach from the DGA monitor and the power supply unit to the grounding point(s).
- Cable stripping tool
- Crosshead screwdriver
- Metal file
- Multimeter

1. Locate the ground terminals on the underside of the DGA monitor and the power supply unit, and find a good grounding point on the transformer or the surrounding structures. See Figure 10 (page 30) and Figure 11 (page 31).
2. Clean the grounding point of rust for a good connection.
3. Ground the DGA monitor:
 a. Run the cable from the ground terminal to the grounding point, and secure it so it does not hang loose.
 b. Connect the cable to the grounding point on the DGA monitor.
 c. Connect the other end of the cable to the grounding point.
 d. Measuring the resistance from the ground terminal to the grounding point to verify the grounding.
4. Repeat step 3 to ground the power supply unit as well.
4.4 Connecting DC power to DGA monitor

- DC power cable (Vaisala cable CBL210544)
- Screwdriver with 3-mm-wide (0.12 in) slotted head
- Adjustable wrench

1. Open the cable gland marked **DC in** on the DGA monitor. Remove the plug and store it for later use.

2. Insert the DC power cable through the outer nut and the seal insert, and start inserting the cable through the cable gland. Stop when you reach the section of the cable where the metal braid is exposed.

3. Bend the cable braid over the seal insert so that it will make contact with metal when the cable gland is tightened.

4. Push the outer nut and the seal insert against the contact socket of the gland and tighten the outer nut.
5. Inside the DGA monitor, connect the wires to terminal block **Y3**:

Table 3 Terminal block Y3 wiring

<table>
<thead>
<tr>
<th>Signal</th>
<th>Wire color</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 VDC +</td>
<td>Black with red marking</td>
<td>+</td>
</tr>
<tr>
<td>24 VDC -</td>
<td>Black</td>
<td>-</td>
</tr>
<tr>
<td>Ground</td>
<td>Green/yellow</td>
<td>↓</td>
</tr>
</tbody>
</table>

![Figure 12 Terminal block Y3 wiring](image)

6. Open the cable gland marked **DC out** on the power supply unit. Remove the plug and store it for later use.

7. Insert the DC power cable through the outer nut and the seal insert, and start inserting the cable through the cable gland. Stop when you reach the section of the cable where the metal braid is exposed.
8. Bend the cable braid over the seal insert so that it will make contact with metal when the cable gland is tightened.

9. Push the outer nut and the seal insert against the contact socket of the gland and tighten the outer nut.
10. Inside the power supply unit, connect the wires to terminal block X5:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Wire color</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 VDC +</td>
<td>Black with red marking</td>
<td>+</td>
</tr>
<tr>
<td>24 VDC -</td>
<td>Black</td>
<td>-</td>
</tr>
<tr>
<td>Ground</td>
<td>Green/yellow</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Terminal block X5 wiring

![Terminal block X5 wiring diagram](image)

4.5 Connecting relay control to power supply unit

- Relay control cable (marked RELAY, Vaisala cable CBL210539)
- Screwdriver with 3-mm-wide (0.12 in) slotted head
- Adjustable wrench

1. Open the cable gland marked **relay control out** on the DGA monitor. Remove the plug and store it for later use.

2. Insert the relay control cable through the outer nut and the seal insert, and start inserting the cable through the cable gland. Stop when you reach the section of the cable where the metal braid is exposed.
3. Bend the cable braid over the seal insert so that it will make contact with metal when the cable gland is tightened.

4. Push the outer nut and the seal insert against the contact socket of the gland and tighten the outer nut.

5. Inside the DGA monitor, connect the wires to terminal block **Y2**:

 Table 5 Terminal block Y2 wiring

<table>
<thead>
<tr>
<th>Signal</th>
<th>Wire color</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1 control +</td>
<td>White</td>
<td>1</td>
</tr>
<tr>
<td>Relay 1 control -</td>
<td>Brown</td>
<td>2</td>
</tr>
<tr>
<td>Relay 2 control +</td>
<td>Green</td>
<td>3</td>
</tr>
<tr>
<td>Relay 2 control -</td>
<td>Yellow</td>
<td>4</td>
</tr>
<tr>
<td>Relay 3 control +</td>
<td>Grey</td>
<td>5</td>
</tr>
<tr>
<td>Relay 3 control -</td>
<td>Pink</td>
<td>6</td>
</tr>
</tbody>
</table>

 Figure 14 Terminal block Y2 wiring

6. Open the cable gland marked **Relay control in** on the power supply unit. Remove the plug and store it for later use.

7. Insert the relay control cable through the outer nut and the seal insert, and start inserting the cable through the cable gland. Stop when you reach the section of the cable where the metal braid is exposed.
8. Bend the cable braid over the seal insert so that it will make contact with metal when the cable gland is tightened.

9. Push the outer nut and the seal insert against the contact socket of the gland and tighten the outer nut.

10. Inside the power supply unit, connect the wires to terminal block X4:

Table 6 Terminal block X4 wiring

<table>
<thead>
<tr>
<th>Signal</th>
<th>Wire color</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1 control +</td>
<td>White</td>
<td>2</td>
</tr>
<tr>
<td>Relay 1 control -</td>
<td>Brown</td>
<td>3</td>
</tr>
<tr>
<td>Relay 2 control +</td>
<td>Green</td>
<td>5</td>
</tr>
<tr>
<td>Relay 2 control -</td>
<td>Yellow</td>
<td>6</td>
</tr>
<tr>
<td>Relay 3 control +</td>
<td>Grey</td>
<td>8</td>
</tr>
<tr>
<td>Relay 3 control -</td>
<td>Pink</td>
<td>9</td>
</tr>
</tbody>
</table>

Figure 15 Terminal block X4 wiring
4.6 Connecting RS-485 serial line

- RS-485 cable
- Screwdriver with 3-mm-wide (0.12 in) slotted head
- Cable stripping tool

Default settings of the RS-485 line are:

- Baud rate: 19200
- Transmission mode: 8E1
- Modbus slave ID: 240

1. Open the cable gland marked **RS-485** on the DGA monitor. Remove the plug and store it for later use.

2. Prepare the cable for connection:
 a. Measure how much cable you need to reach from the cable gland to terminal block **Y1**.
 b. Remove the outer sheath and cable braid from the part of the cable that will be left inside the DGA monitor.
 c. Strip the ends of the individual wires to expose the conductors for 1 cm (0.4 in).
 d. Remove some more of the outer sheath to expose more cable braid. This part of the braid should be connected to the cable gland.

3. Insert the cable through the outer nut and the inner seal, and start inserting the cable through the cable gland. Stop when you reach the section of the cable where the metal braid is exposed.

4. Arrange the cable braid so that it makes contact with the cable gland when it is closed. Push the inner seal in place and tighten the outer nut.
5. Inside the DGA monitor, connect the wires to terminal block **Y1**:

Verify the wiring colors of your cable before making any connections.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-485 +</td>
<td>1</td>
</tr>
<tr>
<td>RS-485 -</td>
<td>3</td>
</tr>
<tr>
<td>Common</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 16 Terminal block Y1 wiring example
4.6.1 RS-485 termination and biasing

Use of termination and bias resistors on the RS-485 line is configured using DIP switches on the isolated RS-485 repeater. Change their configuration if necessary for your system. See Table 8 (page 41).

There are two banks of DIP switches on the underside of the RS-485 repeater. Switches for configuring the RS-485 output are at the front of the repeater, next to the grounding terminal (green screw).

1 DIP switches for configuring the RS-485 output.
2 DIP switches for configuring the internal serial connection. Do not change the settings of this bank.
<table>
<thead>
<tr>
<th>Switch number</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>ON</td>
<td>Communication mode</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>ON</td>
<td>Result</td>
</tr>
<tr>
<td>ON</td>
<td>RS-485 2-wire half-duplex (default)</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>OFF</td>
<td>RS-485 4-wire full-duplex</td>
</tr>
<tr>
<td>Switch 5</td>
<td>Termination resistor</td>
</tr>
<tr>
<td>OFF</td>
<td>Use external or no termination (default)</td>
</tr>
<tr>
<td>OFF</td>
<td>Use external or no bias resistor</td>
</tr>
<tr>
<td>OFF</td>
<td>Use built-in 1.2 kΩ transmit bias resistor (default)</td>
</tr>
<tr>
<td>Switch 7</td>
<td>Receive bias resistor</td>
</tr>
<tr>
<td>OFF</td>
<td>Use external or no bias resistor (default)</td>
</tr>
<tr>
<td>OFF</td>
<td>Use built-in 1.2 kΩ receive bias resistor</td>
</tr>
</tbody>
</table>

Switch 8 is not used.

CAUTION! DGA monitor is wired for 2-wire communication so do not change the communication mode.

4.7 Connecting Ethernet

- Shielded outdoor Ethernet cable with a RJ45 connector for the permanent Ethernet connection
- Protection shell for Ethernet connector

Ethernet connector **ETH1** inside the DGA monitor is intended for temporary local use only. For a permanent network connection, use the Ethernet connector under the DGA monitor.
1. Assemble the protection shell over the RJ45 connector on your Ethernet cable. Assemble according to Code A: see instructions on top of the bag that contains the parts.

CAUTION! You must use the protection shell to maintain the ingress protection rating of the enclosure.

Figure 19 RJ45 connector inside the protection shell

2. Open the plug marked **Ethernet** under the DGA monitor.
4. Tighten the connector by hand.

4.8 Connecting relays

- Relay cable
- Screwdriver with 3-mm-wide (0.12 in) slotted head
- Adjustable wrench

Maximum switching current of the relays:

- 6 A (at 250 VAC)
- 2 A (at 24 VDC)
- 0.2 A (at 250 VDC)
1. Open the cable gland marked **Relay out** on the power supply unit. Remove the plug and store it for later use.

2. Prepare the cable for connection:
 a. Measure how much cable you need to reach from the cable gland to terminal block **X3**.
 b. Remove the outer sheath and cable braid from the part of the cable that will be left inside the power supply unit.
 c. Strip the ends of the individual wires to expose the conductors for 1 cm (0.4 in).
 d. Remove some more of the outer sheath to expose more cable braid. This part of the braid should be connected to the cable gland.

3. Insert the relay cable through the outer nut and the inner seal, and start inserting the cable through the cable gland. Stop when you reach the section of the cable where the metal braid is exposed.

4. Arrange the cable braid so that it makes contact with the cable gland when it is closed. Push the inner seal in place and tighten the outer nut.
5. Inside the power supply unit, connect the wires to terminal block X3. Wire the connection as **normally open (NO)** or **normally closed (NC)** according to the table below.

Verify the wiring colors of your cable before making any connections.

Table 9 Terminal block X3 wiring

<table>
<thead>
<tr>
<th>Signal</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 1 NC</td>
<td>1</td>
</tr>
<tr>
<td>Relay 1 common</td>
<td>2</td>
</tr>
<tr>
<td>Relay 1 NO</td>
<td>3</td>
</tr>
<tr>
<td>Relay 2 NC</td>
<td>4</td>
</tr>
<tr>
<td>Relay 2 common</td>
<td>5</td>
</tr>
<tr>
<td>Relay 2 NO</td>
<td>6</td>
</tr>
<tr>
<td>Relay 3 NC</td>
<td>7</td>
</tr>
<tr>
<td>Relay 3 common</td>
<td>8</td>
</tr>
<tr>
<td>Relay 3 NO</td>
<td>9</td>
</tr>
</tbody>
</table>

![Figure 20](image.png) Terminal block X3 example wiring for normally open (NO) connection
4.9 Connecting AC (mains) power

- AC power cable with 2.5 mm² (AWG10) wires and 9 ... 16 mm (0.35 ... 0.63 in) external diameter. Must be compliant with local regulations for mains power cables.
- Cable stripping tool
- Screwdriver with 3-mm-wide (0.12 in) slotted head
- Adjustable wrench

WARNING! Only licensed experts may install electrical components. They must adhere to local and state legislation and regulations.

WARNING! Make sure that you prepare and connect only de-energized wires.

WARNING! Keep away from live circuits. Operating personnel must observe safety regulations at all times.

WARNING! If the diameter of your mains power cable is not compatible with the cable gland marked AC in, you can use either of the two cable glands marked Spare (diameter 5 ... 10 mm (0.2 ... 0.39 in)). If you are not wiring any relay outputs, you can also use cable gland marked Relay out (diameter 7 ... 12 mm (0.28 ... 0.47 in)). If the AC in cable gland is left unused, remember to plug it so that the enclosure remains tight. If the power supply unit has no suitable cable gland free, you can replace the cable gland marked AC in with a certified cable gland that is suitable for protecting the cable and providing strain relief.

1. Install an external disconnection device for the AC power connection (for example, a circuit breaker). Note the following:
 - The disconnection device must be rated 16 A or 20 A at 250 VAC, and must conform to any additional local regulations.
 - The disconnection device must be visible from the DGA monitor, or lockable with a key to prevent accidental switching on during installation and maintenance.
 - The DGA monitor should not block access to the disconnection device after it has been installed. The disconnection device should remain easy to operate.

2. Clearly mark the disconnection device as the disconnection device for the OPT100 DGA Monitor.
3. Make sure the external disconnection device is turned off. If possible, lock it in the off position.

4. Run the AC cable between the external disconnection device and the power supply unit of the DGA monitor.

5. Connect the AC cable to the external disconnection device.

6. Open the cable gland marked **AC in** on the power supply unit. Remove the plug and store it for later use.

7. Prepare the cable for connection to the power supply unit:
 a. Strip 14 cm (5.51 in) of the AC cable to expose the wires.
 b. Cut off 2 cm (0.79 in) of the line and neutral wires (brown and blue). Leave the green and yellow grounding wire 14 cm (5.51 in) long.

 CAUTION! Make sure that the grounding wire is longer than the line and neutral wires. Under mechanical stress, the grounding wire must be the last to disconnect from the protective ground terminal.

 c. Strip the ends of the individual wires to expose the conductors for 1 cm (0.4 in).

8. Insert the cable through the outer nut and the inner seal.

9. Start inserting the cable through the cable gland, and stop when the unstripped cable is visible through the gland.
10. Inside the power supply unit, connect the wires to terminal block X1:

CAUTION! Line and neutral **must** be connected to the correct terminals or surge protection of the DGA monitor will not function appropriately. If you are uncertain which wire is line and which is neutral, make sure by measuring their potential with respect to ground.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Wire color</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td>Brown</td>
<td>L</td>
</tr>
<tr>
<td>Neutral</td>
<td>Blue</td>
<td>N</td>
</tr>
<tr>
<td>Ground</td>
<td>Green/yellow</td>
<td>☢️</td>
</tr>
</tbody>
</table>

11. Tighten the **AC in** cable gland. The cable gland is also the strain relief for the cable, so make sure the gland holds the cable tight.

4.10 Verifying tightness of cable glands

- Adjustable wrench
To maintain enclosure tightness and provide strain relief to the cables, all cable glands on the DGA monitor and the power supply unit must be tightened. Unused cable glands must remain plugged.

1. Check every cable gland that is in use:
 a. Pull on the cable slightly to verify that the cable is securely held by the cable gland.
 b. Tighten the cable gland if the cable moves easily.

2. Check that every unused cable gland is plugged and tightened.
5. Commissioning

5.1 Turning on DGA monitor

CAUTION! Verify that the DGA monitor is fully wired and grounded before turning it on.

CAUTION! If the circuit breakers will not stay in the ON position, turn off AC power to the DGA monitor immediately and inspect the AC and DC power wiring. The circuit breakers may be tripping because of a loose wire or incorrect connection.

1. Verify that the circuit breakers **Main** and **Heat** inside the DGA monitor are turned on.
2. Turn on AC power from the external disconnection device.
3. Turn on the circuit breaker **F1 Main** and switch **S1** inside the power supply unit.
4. Check the **DC OK** LED on the power supply:
 - If the LED is lit solid green, DC power to the DGA monitor is successfully turned on.
 - If the LED keeps blinking, it is likely that the 24 VDC connection to DGA monitor is wired incorrectly. Turn off switch **S1** and AC power, and correct the problem before attempting to power on the DGA monitor again.

5.2 Connecting to user interface

- Laptop computer with:
 - RJ45 Ethernet connector
 - Web browser (Google Chrome™, Microsoft Internet Explorer®, or Mozilla Firefox®)
 - Ethernet cable with RJ45 connectors for temporary use
 - Administration password for this DGA Monitor

1. Connect your computer to the same network as the DGA monitor. If you are connecting locally, connect the network cable between your computer and the port marked **ETH1** on the processing unit inside the DGA monitor.
2. Open a web browser on the computer, and enter the IP address of the DGA monitor in the address bar:
 - If you are connecting locally through the ETH1 port, use the following IP address: **192.168.28.2**
 - If you are connecting through the network meant for SCADA integration, use the IP address that has been assigned to the DGA monitor.

3. Your web browser may warn you that your connection is not secure. This is expected and happens when the user interface of the DGA monitor is secured using a certificate that is not trusted by your browser. Since the user interface is secured using a self-signed certificate by default, this will always happen for new devices. If you know that user interface security has not been configured to use a trusted certificate, continue regardless of the warning. HTTPS traffic is always encrypted even if the certificate is not trusted.

4. Select **Admin** as the user name.

5. Enter the unique administration password for this DGA monitor. The password is included in the delivery documentation.

6. Select **Log in**. The user interface opens in your browser.

5.3 Changing administrator password

CAUTION! If you forget your administrator password, you need to contact Vaisala Support to reset it for you.
1. In the top right corner of the user interface, select **Admin > Change password**.

2. Enter the current password in the **Current password** field.

3. Enter the new password in the **New password** and **Confirm new password** fields. The new password must be at least 8 characters long.

4. Select **Save** to commit the password change.

5.4 Configuring network connection

This procedure configures the network settings of the external Ethernet connection.

1. In the user interface, select **Settings > Network > IP Address**.
2. Select how the IP address of the external Ethernet connection is assigned: **DHCP** for automatic assignment, and **Static IP Address** to enter the values manually.

3. If you selected **Static IP Address**, enter the following values:
 - IP Address
 - Subnet Mask
 - Default Gateway

4. Select **Apply** to save your changes.

5.5 Configuring user interface security

This procedure configures HTTPS encryption for the user interface connection. By default, DGA monitor only allows encrypted connections to the user interface (HTTPS) using a self-signed certificate. Any connections that request unencrypted communication (HTTP) are redirected to the encrypted interface (HTTPS).

The default self-signed certificate is not trusted by connecting web browsers, so they will notify the user that the connection is not secure. To remove the notification, you need to install a trusted TLS certificate (TLS 1.1 or 1.2) on the DGA monitor. However, note that HTTPS traffic is always encrypted even if the certificate is not trusted. Vaisala recommends using encrypted connections (HTTPS).

1. In the user interface, select **Settings > Network > Security**.
2. Select **HTTP** to use unencrypted user interface connections, or **HTTPS (default)** to secure the interface using encryption.

3. To use your own certificate with HTTPS connections:
 a. Select **Upload certificate**.
 b. Select **Certificate file > Browse** and locate the certificate file.
 c. Select **Private key file > Browse** and locate the private key file.
 d. Enter the **Private key password** if your private key requires it.

4. Select **Apply** to save your changes.

 If you change the security settings, the user interface will restart and you have to log in again.

5.6 Setting device name

![Figure 25 General settings page](image)

You can give a name to the DGA monitor to help identify it. If the name is set, it is shown in:

- Login page
- Above the Optimus text in the navigation menu
- Names of files downloaded from the user interface
1. In the user interface, select **Settings > General**.
2. Enter a name for the device in the **Name** field. Maximum length is 64 characters. You can use alphanumerical characters, space, hyphen "-", and underscore "_".
3. Select **Apply** to save the name.

5.7 Setting date and time

CAUTION! When the DGA monitor is shipped from the Vaisala factory, its real-time clock (RTC) is stopped to allow for storage without draining the RTC backup battery. Set date and time when starting the commissioning.

- DGA monitor uses UTC (Coordinated Universal Time) internally. Time and time stamps in the user interface are shown according to the time zone of the connecting web browser.
2. To set date and time manually:
 a. Select **Set time manually**.
 b. Select or enter the current date in the **Date** field. The format is yyyy-mm-dd.
 c. Enter the current time in the **Time** field. The field is in 24-hour clock notation in the form hh:mm.
 d. Select **Apply** to save the manually set time.

3. To set up time synchronization with a Network Time Protocol (NTP) server:

 NTP synchronization requires that the network connection is configured and the IP address of the NTP server is reachable.

 a. Select **Use NTP**.
 b. Enter the IP address of the NTP server in the **NTP server** field.
 c. Select **Apply** to start time synchronization. Status of time synchronization is shown below the **NTP server** field. If the status shows **Connecting...** and does not progress to **Synchronizing time...** even after waiting for a minute, verify that the network connection is working and configured, and the IP address of the NTP server is correctly entered.
 d. Wait for the message **Time successfully synchronized** to appear.

4. To set up time synchronization using DNP3 protocol:
 a. Enable and configure the DN3 protocol. See Configuring DNP3 protocol (page 61).
 b. Select **Use DNP3**.
 c. Select **Apply** to start time synchronization.

5.8 Initializing DGA monitor

 • 5-mm Allen key

Before starting the initialization, make sure that:

• DGA monitor is fully installed and wired.
• All oil connections are completed.
• DGA monitor is turned on.
• You are connected to the user interface with a web browser.
You must have physical access to the DGA monitor enclosure and the oil valves on the transformer. Do not try to perform the initialization remotely. You can stop the initialization sequence at most phases by selecting Control > Cancel.

While waiting between the initialization steps, you can navigate away from the Control page and access the other pages (for example, to perform system configuration tasks). Remember to come back to the Control page to complete the initialization.

1. In the user interface, select Control.
2. Read the instructions on screen and verify that DGA monitor is waiting to be initialized.
3. Select Start to start the initialization sequence.
4. Turn the gray knob on the side of the bleed valve 90° counterclockwise to open the manual override lock. The knob pops outward when the lock is open. Select **OK** when done.

The initialization sequence performs a test to verify that the manual lock on the bleed valve is now open. In rare cases, it is possible for the test to fail even if the lock has been opened. If the test fails, you can choose to skip the test and proceed with the initialization. Skip the test only if you are certain the lock is open.
5. Remove the pipe plug from the bleed valve using the 5-mm Allen key. It does not take many rotations to remove so be careful not to drop it. Select **OK** when done.

6. Open the oil intake and return valves on the transformer and select **OK**.

7. Wait for the DGA monitor to fill with oil. Oil pressure from the transformer is used in the beginning of the filling, and assisted using the oil pump of the DGA monitor in the later stage. Typical duration of this step is 30 ... 60 minutes, depending on oil pressure, viscosity, temperature, and length of the oil lines.

8. When instructed to do so, reattach the pipe plug to the bleed valve. Select **Continue** when done.

9. When the user interface informs that the initialization is complete, select **OK**. DGA monitor is now in standby, waiting for you to start the measurement.
5.9 Configuring autocalibration

Starting with software version 1.11.0, the DGA monitor performs autocalibration when needed and when environmental conditions are suitable. Vaisala recommends leaving this feature enabled, but Admin user can disable it from the Autocalibration page.

Even if the automatically started autocalibration is disabled, the initial autocalibration will still run after the DGA monitor has been initialized. Autocalibration can also be manually started.

1. In the user interface, select **Control > Autocalibration**.
2. Configure the setting using the switch on the page:
 - If you want to disable automatically started autocalibration, move the switch to the left.
 - If you want DGA monitor to start autocalibration when it determines it is necessary, set the switch to position **Start automatically**.
5.10 Configuring Modbus protocol

1. In the user interface, select **Settings > Network > Modbus**.
2. Select the connection type(s) for which Modbus protocol should be enabled. You can select **TCP** (Ethernet), **RTU** (serial line), or both.
3. If you enabled Modbus RTU, configure the serial connection:
 a. Select **Baud rate** for the connection. Available options are:
 - 4800
 - 9600
 - 19200
 - 38400
 - 57600
 - 115200
 b. Select **Transmission mode**, 8E1 or 8N2.
 c. Enter the Modbus **Slave ID** for the DGA monitor. Range 1...247.
4. Click **Apply** to save your changes.
5.11 Configuring DNP3 protocol

DNP3 protocol is an optional feature and requires a license. If a license is not installed on the DGA monitor, you cannot enable the protocol. Contact Vaisala for acquiring the license.

1. In the user interface, select Settings > Network > DNP3.
2. Select if the DNP3 protocol should be Enabled or Disabled.
3. If you enabled the DNP3 protocol, configure the following settings:
 - **Connection type**
 Interface where DNP3 protocol will be available.
 - **Slave link address**
 Address of this DGA monitor.
 - **Master link address**
 Address of the DNP3 master.
 - **Default analog input variation**
 Data format variation for analog input values. Variations 1 ... 6 are available.

4. If you selected **Serial port** as the connection type, configure the following settings:
 - **Baud rate**
 Baud rate of the serial connection. Available options are 4800, 9600, 19200, 38400, 57600, and 115200.
 - **Transmission mode**
 Number of data bits, parity, and number of stop bits used in serial communication. Available options are 8E1 and 8N2.

5. Set the classes used for the **Gas alarm**, **Gas caution**, and **Device status** events.
6. Select **Apply** to save your changes.

Select Download to download the DGA monitor device profile in XML format. It is needed to configure your DNP3 master system.
5.12 Configuring IEC 61850 protocol

IEC 61850 protocol is an optional feature and requires a license. If a license is not installed on the DGA monitor, you cannot enable the protocol. Contact Vaisala for acquiring the license.

1. In the user interface, select Settings > Network > IEC 61850.
2. Select if the IEC 61850 protocol should be Enabled or Disabled.
3. Select Apply to save your changes.

You can download the following supporting documents from this page:
- IED Capability Description (ICD) file
- Protocol Implementation Conformance Statement (PICS)
- Model Implementation Conformance Statement (MICS)
5.13 Using protocol test mode

1. In the user interface, select **Settings > Network > Protocol Test Mode**.
2. Check the status of the protocols listed under **Protocols**. Make sure the protocols you want are enabled. If they are not, you must enable and configure them first before continuing this procedure.
3. Select **Start** to enable the protocol test mode and open the protocol test mode page.

The page is preconfigured with arbitrary default values for measurement parameters. The values are all different to make it easy to verify on the SCADA side that the correct parameter is being read and displayed. Scroll the page to reveal all of the fields.
4. To set your own test data:
 a. Edit the values of the fields as required.
 b. Check the checkboxes to enable the desired caution and warning level alerts.
 c. Select **Update** at the bottom of the page to take the new test data into use.

5. The test mode will end automatically after one hour. You can select a longer timeout from the drop-down menu marked **Test mode timeout in**. Select **Update** to take the new timeout into use.

6. You can now start testing by reading information from the DGA monitor from the SCADA system side.

7. When you are done testing, select **Close** to end the test mode immediately or wait until the end of the timeout.

5.14 Configuring gas level alerts

![Alerts page](image)

You can configure gas level alerts on the **Alerts** page. There are separate rows for each individual alert that you can configure. By default, all alerts are off, and automatic acknowledgement is off.

For more information on how alerts are activated, indicated, and acknowledged, see **OPT100 User Guide (M211858EN)**.

1. In the user interface, select **Alerts**.
2. Configure **Automatic acknowledging** as desired:
 - If you want to manually acknowledge all alerts, leave it **Disabled**.
 - If you want the DGA monitor to automatically acknowledge alerts if the criteria are met, set it to **Enabled**.

3. For each alert you want to configure, enter the
 a. Enter the **Caution Limit** in ppm. This is the lower limit that triggers an alert with caution severity.
 b. Enter the **Alarm Limit**. Alarm limit should be higher than the caution limit.
 c. Set the alert to **On** to enable it.

Settings are applied immediately.

> It is possible to have only caution or alarm severity active. If you leave a limit value empty or enter a zero, the corresponding severity will not be active for that alert.

5.15 Configuring relays

![Figure 33 Relay settings page](image)

1. In the user interface, select **Settings > Relays**.
2. Each of the three relays is configured individually. For each relay:

a. Select relay **Mode**:
 - In **Normal** mode, the relay is activated by the selected **Trigger**.
 - In **Test** mode, the relay activation is controlled manually from the **Set test state** buttons.

 If the relay is not used, select the **Test** mode. You can also use it to test that wiring has been connected correctly.

b. Select relay **Trigger**:
 - **Gas Caution** activates the relay if any gas level alert of **caution** severity is active.
 - **Gas Alarm** activates the relay if any gas level alert of **alarm** severity is active.
 - **Device Error** activates the relay if a device error is active.

Settings are applied immediately.

5.16 Starting measurement

In normal operation DGA monitor repeats the measurement cycle continuously. You can only start the measurement if DGA monitor is currently in standby.

1. Start measurement from **Control > Start Measuring**.

 Since this is the first time measurement is started after initialization, the DGA monitor will perform autocalibration. Autocalibration improves measurement performance by adapting the DGA monitor to transformer oil conditions. After autocalibration, DGA monitor continues to measure normally. Autocalibration takes from 2 to 5 days depending on conditions. Measurements performed during autocalibration do not meet the accuracy and repeatability specifications and they should not be used for transformer diagnostics.

2. Wait for the first measurement cycle to complete. Depending on the starting conditions, it may take up to 90 minutes. Verify that there are no oil leaks in the oil pipes or inside DGA monitor.

5.17 Finalizing installation

1. If you have connected DGA monitor to a host system using Ethernet or RS-485 connections, verify the availability of measurement data from the host system.

2. Verify that you have performed all installation steps according to the **DGA monitor configuration report (page 71)**.
3. Before leaving the installation site, perform a safety check and lock up according to the Post-installation checklist (page 73).

Keep the doors closed and locked when not actively working inside the enclosures or accessing the service port locally. Keeping the DGA monitor door closed when performing measurement is also important for temperature management of measurement components.
6. Installation report

6.1 Site and device information

<table>
<thead>
<tr>
<th>Site information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Company</td>
<td></td>
</tr>
<tr>
<td>Contact information</td>
<td></td>
</tr>
<tr>
<td>Substation name and address</td>
<td></td>
</tr>
<tr>
<td>Date(s) of visit</td>
<td></td>
</tr>
<tr>
<td>Transformer ID</td>
<td></td>
</tr>
</tbody>
</table>
Site information

<table>
<thead>
<tr>
<th>Scope of work</th>
</tr>
</thead>
</table>

Device information

<table>
<thead>
<tr>
<th>DGA monitor model</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DGA monitor serial number</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Mounting type</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Oil line type and size</th>
</tr>
</thead>
</table>
Device information

<table>
<thead>
<tr>
<th>Oil inlet valve location</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil return valve location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.2 DGA monitor configuration report

Table 11 Wiring

<table>
<thead>
<tr>
<th>Item</th>
<th>Yes</th>
<th>No</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC power cable installed between DGA monitor and power supply unit</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Relay control cable installed between DGA monitor and power supply unit</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Devices connected to relays in power supply unit</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Yes</td>
<td>No</td>
<td>Comment</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----</td>
<td>----</td>
<td>---------</td>
</tr>
<tr>
<td>RS-485 cable connected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet cable connected</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 12 Configuration

<table>
<thead>
<tr>
<th>Item</th>
<th>Yes</th>
<th>No</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and time set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admin password changed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device name configured</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet connection configured</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User interface security configured</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autocalibration configured</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 61850 protocol configured and enabled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNP3 protocol configured and enabled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modbus protocol configured and enabled</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.3 Post-installation checklist

Verify items in this checklist after you have completed all installation steps.

<table>
<thead>
<tr>
<th>Item</th>
<th>Yes</th>
<th>No</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relays configured and enabled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas level alerts configured and enabled</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Mechanical installation stable and secure | | | |
| DGA monitor is installed vertically and not tilted more than 5 degrees | | | |
| Mains power connection and protective grounding verified | | | |
| All unused cable glands blocked and cable glands tightened | | | |
| Operation of relays tested | | | |
| Oil pipe connections checked for leaks | | | |
| Initialization completed successfully | | | |</p>
<table>
<thead>
<tr>
<th>Item</th>
<th>Yes</th>
<th>No</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGA monitor powered on and in measurement mode (not standby)</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>No errors active in user interface</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Status LED on DGA monitor door is green</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Pipe plug in place over the bleed valve</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Connection to DGA monitor verified from SCADA system</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>DGA monitor enclosure closed and locked with all three locks</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Power supply unit enclosure closed and locked</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>
Index

A
autocalibration..59

C
cable glands.. 47
configuration report.. 71

D
date and time..54
device name.. 53
dimensions..20
DNP3 protocol
configuring... 61

gas level alerts
configuring.. 65
grounding..31

I
IEC 61850 protocol
configuring... 63
installation
accessories.. 10
location..12
oil lines... 23
personnel...8
phases... 8
required materials.. 9
site...11
tools... 10
installation report.. 69

M
measurement
starting...67

Modbus protocol..60

mounting
Ground Mounting Set... 16
Power Supply Unit.. 27
Weather Shield.. 27

N
network..14

P
parts
cable glands..30
connectors... 30
ground mounting set... 18
interior... 29
wall mounting set... 22
password... 50
post-installation checklist...................................... 73

protocol test mode.. 64

R
regulatory compliances... 14
reinstalling... 11
relays.. 66
RS-485..40

S
safety... 7
serial line...40, 60
starting measurement... 67

T
transporting.. 11

U
unpacking... 16
Technical support

Contact Vaisala technical support at helpdesk@vaisala.com. Provide at least the following supporting information as applicable:

- Product name, model, and serial number
- Software/Firmware version
- Name and location of the installation site
- Name and contact information of a technical person who can provide further information on the problem

For more information, see www.vaisala.com/support.

Warranty

For standard warranty terms and conditions, see www.vaisala.com/warranty. Please observe that any such warranty may not be valid in case of damage due to normal wear and tear, exceptional operating conditions, negligent handling or installation, or unauthorized modifications. Please see the applicable supply contract or Conditions of Sale for details of the warranty for each product.

Recycling

Recycle all applicable material.

Follow the statutory regulations for disposing of the product and packaging.