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Abstract—Prior studies by Woodard [2011], Thurmond [2014], 
and Travis [2015] show that dual-polarization radar can be 
utilized to identify the presence of hydrometeors necessary for 
cloud charging.  Travis [2015] discovered two parameters, when 
used together, produced the best results: Z greater than or equal 
to 36.5 dBZ and ZDR greater than or equal to 0.31 both at the -10⁰ 
C level.  This study tested the lightning initiation method 
developed for Cape Canaveral Air Force Station (CCAFS) and 
NASA Kennedy Space Center (KSC) in Travis [2015] in a new 
location.  The method was tested on 100 isolated, warm season 
thunderstorms spanning 6 years in and around the Washington, 
D.C. area.  The results of this study concluded that the lightning 
initiation prediction algorithm from Travis [2015] does not 
perform well for the Washington, D.C. area.  This implies that one 
lightning initiation algorithm cannot be applied across the entire 
national NEXRAD network. 

Keywords—dual-polarization radar; Lightning Mapping Array, 
lightning initiation, forecasting lightning 

I. INTRODUCTION 
The occurrence of lightning is one of Earth's natural dangers 

and each day approximately 50,000 thunderstorms occur around 
the globe [Ahrens, 2014].  Over the past 30 years, the United 
States has averaged around 55 lightning fatalities and 300 
injuries per year [Roeder, 2012; NWS, 2017a].  Although there 
have been recent reductions in lightning-related injuries and 
fatalities, lightning continues to remain a deadly and costly 
weather phenomenon in the United States [Holle, 2016].  
Research conducted by the National Lightning Safety Institute 
suggests realistic lightning costs and losses may exceed $8-10 
billion per year in the United States alone [National Lightning 
Safety Institute, 2014].  Continuing research into this deadly and 
costly force of nature will allow for additional time to prepare 
and respond with effective safety measures. 

Lightning initiation is among the biggest forecast challenges 
facing the Air Force's 45th Weather Squadron (45WS).  The 
45WS is responsible for supporting space launch operations at 
Cape Canaveral Air Force Station (CCAFS), Kennedy Space 
Center (KSC) and Patrick Air Force Base (PAFB).  Determining 
the most accurate lightning initiation prediction methods is vital 
to safeguard these areas, which include over $20 billion in 
equipment, facilities and over 25,000 personnel [Travis, 2015].  
While lightning initiation predictor methods currently exist for 
the CCAFS/KSC/PAFB area, these methods can be improved 
upon and possibly applied to different locations to increase 
lightning forecast accuracy across the country.  The 45WS is 
especially interested in increasing the lead-time of their 
lightning forecasting while maintaining good skill. 

The electrification of a developing single-cell thunderstorm 
is the result of a combination of several processes.  Non-
inductive charging is currently the most widely accepted theory 
as the dominant electrification process within a thunderstorm 
[Wallace and Hobbs, 2006].  According to Deierling et al [2005; 
2008], the production of lightning is directly proportional to 
mass upward flux of ice crystals and the downward mass flux of 
graupel.  Each of these fluxes is tied to the updrafts and 
downdrafts of the single-cell thunderstorm.  Charge is generated 
within the cloud when collisions occur between falling graupel 
and stationary to upward moving ice crystals that make up 
various portions of the cloud [MacGorman and Rust, 1998].  
This vertical charge structure is primarily separated into several 
distinct regions of opposite charge.  In the collision process, 
graupel (gaining mass through accretion) descends as it becomes 
too heavy for the updraft to hold aloft and small, lighter weight 
ice crystals ascend with the updraft.  Supercooled water droplets 
must also be present as they have been experimentally proven to 
promote significant charge transfer [Reynolds et al., 1957].  
During collision, heavier graupel is typically negatively charged 
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while the lighter ice crystal is positively charged [Reynolds et 
al., 1957].  Under some conditions, the charging is reversed from 
normal, leading to more frequent positive polarity cloud-to-
ground lightning from the core of the thunderstorm.  The graupel 
pellets charge negatively at low temperatures and positively at 
higher temperatures [Saunders, 2008].  This charging process 
provides insight into the feasibility of using various dual-
polarization radar parameters for the prediction of lightning 
initiation. 

Prior studies by Woodard [2011] and Thurmond [2014] 
show that dual-polarization radar can be utilized to identify the 
presence of hydrometeors necessary for cloud charging.  These 
studies also emphasized that a combination of Z and ZDR 
predictors have the potential to improve forecast skill of 
lightning onset over methods that rely on Z alone.  The most 
recent lightning initiation research, conducted by Travis in 2015, 
provided the basis for this study as he further describes the use 
of dual-polarization radar to improve lead times for lightning 
onset.  Travis [2015] highlighted that ZDR is the preferred 
parameter to use in conjunction with Z values as elevated ZDR 
values are indicative of supercooled water droplets and wet ice 
particles.  More precisely, the mixed phase hydrometeors, which 
are necessary for cloud electrification, create a well-defined ZDR 
column.  The results of Travis [2015] confirmed that using both 
Z and ZDR predictors increases the Probability of Detection 
(POD) and lead time while decreasing the False Alarm Ratio 
(FAR).  Travis [2015] discovered two parameters, when used 
together, produced the best results: Z ≥ 36.5 dBZ coupled with 
a ZDR  ≥ 0.31 both at the -10°C thermal level. 

While prior studies have primarily focused on atmospheric 
conditions preceding lightning initiation, more work is needed 
to apply dual-polarization parameters to this challenging 
problem.  This study will verify the lightning initiation method 
developed by the Air Force Institute of Technology for CCAFS 
and KSC by Travis [2015].  The best performing thresholds for 
the CCAFS/KSC area based on forecast metrics and lead time 
will be applied to the Washington, D.C. region.  If this lightning 
initiation method verifies well at this new location, that will 
build confidence for use of the method at CCAFS/KSC and lend 
credence for use at other locations and eventual implementation 
as a new product in the Next Generation Weather Radar 
(NEXRAD) network. 

II. DATA AND METHODOLOGY 

A. Data 
Three weather radars provide coverage of the Washington, 

D.C. area.  The Sterling, VA (KLWX) radar located 
approximately 25 miles northwest of Washington, D.C., the 
Dover Air Force Base, DE (KDOX) radar located approximately 
110 miles east of Washington, D.C. and the Wakefield, VA 
(KAKQ) radar located approximately 138 miles southeast of the 
Washington, D.C. area.  These radars are shown in Fig. 1.  For 
this study, radar data was pulled exclusively from the KLWX 
radar as it provided optimal coverage of all thunderstorm cases 
analyzed.  Archived Level-II radar data was downloaded from 
the National Centers for Environmental Information (NCEI) 
NEXRAD Data Inventory. 

 
Fig. 1. Map showing the radars surrounding the Washington, D.C. area.  

Washington, D.C. is denoted by a blue star. 

Although this study builds upon the work of Travis [2015], 
a different dataset will be utilized for lightning detection.  More 
specifically, the Lightning Mapping Array (LMA) will be used 
instead of the Four Dimensional Lightning Surveillance System 
(4DLSS).  The LMA network located in Washington, D.C. 
locates the total lightning activity from a thunderstorm using a 
network that consists of ten sensors in and around the D.C. 
metropolitan area shown in Fig. 2.  The Washington, D.C. LMA 
is a joint demonstration project involving the National 
Aeronautics and Space Administration (NASA), the National 
Oceanic and Atmospheric Administration (NOAA), and New 
Mexico Tech.  Archived LMA data was downloaded from the 
DC LMA Post-Processed Data Archive. 

A LMA is a network of time-of-arrival geolocation sensors 
that passively receive very high frequency (VHF) impulses 
emitted as dielectric breakdown occurs within thunderstorms, 
especially the small fast components of a lightning flash such as 
stepped leaders [Wilson, 2005; Wiens, 2007; Thomas et al., 
2004].  It uses the difference in time-of-arrival of these signals 
from multiple pairs of sensors to locate the discharge in three 
physical dimensions.  As the lightning channel develops, a map 
of the discharge path is produced, including channels within the 
cloud.  Each flash of lightning creates a cluster of individual 
source detections.  A source-to-flash clustering algorithm 
[Thomas et al., 2004] is then used to automatically identify 
flashes as sensed with the mapping array using time-space 
separation thresholds [Chmielewski and Bruning, 2016].  
Processing for the LMA is done in one second segments and the 
arrival times at all stations within the network are sorted 
sequentially by time [Thomas et al., 2004]. 

 
Fig. 2. Map showing the locations of the LMA sensors surrounding the 

Washington, D.C. area. 

https://www.overleaf.com/docs/10729271gcdrssxzqjpx/atts/68979498
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B. Methodology 
An initial dataset of 230 convective cells was collected using 

a quick-look method to eliminate and retain cases on the NCEI 
Interactive Radar Map Tool.  These cases all span a six year 
period from 2012-2017.  Only warm-season (May-September) 
cases were considered.  First, the case date was analyzed for 
convective features.  If a case date was dominated by a large 
multicellular structure or a squall line, then it was not considered 
for analysis.  Specific intensity criteria were not used when 
compiling the initial database with the Interactive Radar Map 
Tool as this tool does not allow the user to see exact Z values of 
specific cells.  Cases that passed the initial dataset inspection 
were recorded. 

Using the GR2Analyst Version 2.60 software, the 230 
convective cell initial dataset was narrowed down to a final 
dataset.  Implementing a strict rack-and-stack method cut the 
initial dataset of 230 convective cells into a final dataset of 100 
convective cell cases.  Prior studies conducted by Woodard 
[2011], Thurmond [2014], and Travis [2015] utilized the Larsen 
area method of radar analysis and lightning initiation location 
[Larsen and Stansbury, 1974] to determine which cells to further 
investigate.  For this study, the cells were analyzed for a Larsen 
area defined by a horizontal Z threshold ≥ 30 dBZ at -10°C.  This 
Z value indicates substantial cellular development of a 
precipitation core based on the size distribution of hydrometeors 
associated with cloud electrification.  The -10°C thermal level is 
significant to thunderstorm charge structure as it indicates the 
lower level of the main charging region and mixed phase region 
of the main negative charge zone.  Once the convective cell was 
determined to be significant enough to potentially produce 
lightning, the next step was to ensure it was isolated.  The 
convective cell was considered isolated if there were no storms 
with connecting Z values greater than 15 dBZ [Patton, 2017]. 

The next step is to verify that each of the individual 
convective cells fall within 85 km of the KLWX radar as NOAA 
defines this range as the range for optimal radar coverage 
[NOAA, 2017a].  Cases must also be within 100 km of the center 
of the Washington, D.C. LMA network.  Chmielewski and 
Bruning [2016] found that the predicted flash detection 
efficiency exceeded 95% within 100 km of all LMA networks.  
Fig. 3 shows the GR2Analyst map with both range ring overlays.  
Each of the convective cells must fall within the overlap of the 
two range rings to be considered for further analysis.  After 
verifying the location of the cases, the raw LMA data was read 
to determine the health of the Washington, D.C. LMA network.  
The final criteria of the case collection rack-and-stack method 
was to analyze the health of the KLWX radar. 

 
Fig. 3. Map of the KLWX radar range ring (yellow) and the Washington, D.C. 

LMA range ring (blue) overlays.  The stars denote the range ring centers. 

Table I. Summary of the possible forecast outcomes based on whether the 
event is forecasted and whether it is observed.  Table developed by Travis 

[2015] from Jolliffe and Stephenson [2003]. 

 
Prior to testing the Travis [2015] lightning initiation criteria, 

the LMA data was interrogated to determine whether or not a 
lightning strike occurred within each of the 100 convective cells 
using MATLAB.  Following the verification of lightning 
initiation, heights of the -10°C thermal levels were collected for 
each case using soundings from the University of Wyoming.  
Once the necessary steps were taken to build a complete and 
robust dataset, the analysis of the highest performing lightning 
initiation prediction criteria from Travis [2015] for 
CCAFS/KSC was conducted in the Washington, D.C. area. 

To begin the analysis of these thresholds, radar data was 
ingested into GR2Analyst.  The case was located on the main 
base reflectivity interface, and the cross-section tool was then 
used to analyze a slice of the cell’s base reflectivity.  This 
process allowed the user to determine if the Z ≥ 36.5 dBZ 
threshold at -10°C was met at any point.  The volumetric display 
function with an isosurface Z value set at 36.5 dBZ was also 
utilized to further verify that the Z threshold was met.  After the 
analysis of Z, the cross-section tool was again utilized to 
determine if the ZDR ≥ 0.31 threshold was met at -10°C.  Unlike 
Z verification, the volumetric display tool could not be used in 
the ZDR analysis as this feature is only available for base Level-
II products.  If the predictor threshold was met and the cell 
produced lightning, then it was recorded as a “hit”.  If the 
threshold was met but the cell did not produce lightning, then a 
“false alarm” was recorded.  If a cell did not reach the predictor 
threshold but still produced lightning, then it was marked as a 
“miss”.  Cells that did not hit the predictor threshold and did not 
produce lightning were recorded as a “correct rejection”.  A 
summary of the forecast outcomes for the analysis is given in 
Table I. 

III. ANALYSIS AND RESULTS 

A. Forecast Metrics Comparison 
The performance of the lightning initiation predictor method 

was measured using forecast metrics utilized in Travis [2015].  
By using the same metrics, a direct comparison between the 
studies can be done and highlights the applicability of the 
lightning prediction algorithm when used in a new location.  
Table II summarizes the results of this comparison.  The arrows 
indicate whether the metric for this study was above or below 
the metric calculated in Travis [2015].  Each of the arrows are in 
red to indicate that the metric change showed a decrease in 
forecast skill. 

For this study, there were 65 cases in which lightning 
occurred and 35 cases where lightning did not occur.  
Additionally, there were 26 hits, 10 misses, 38 correct rejections, 
and 26 false alarms.  The breakdown of these forecast outcomes 
helps explain the forecast metric results.  The first metric, POD,  
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Table II. Table summarizing the results of the analysis.  The red arrows 
indicate whether the metric is higher or lower for Washington, D.C. than it was 
for CCAFS/KSC.  The asterisk for OUI represents the use of the modified OUI 

equation rather than the OUI equation used in Travis [2015]. 

 
provides insight into the correctly forecasted lightning 
occurrences.  Although the POD provides useful information, it 
is limited in measuring the overall skill of a forecast as it does 
not take false alarms into account [Jolliffe and Stephenson, 
2003].  For perfect skill, a value of 1.0 is needed.  CCAFS/KSC 
had a POD of 0.8889 while Washington, D.C. had a lower value 
of 0.7222, indicating a higher hit rate for CCAFS/KSC than for 
the Washington, D.C. area. 

The next metric, FAR, provides the probability of a false 
alarm when an occurrence is predicted [Jolliffe and Stephenson, 
2003].  Similarly to POD, FAR is not a useful skill on its own 
due to the dependence on the amount of hits.  CCAFS/KSC had 
a FAR of 0.0588 while Washington, D.C. had a value that was 
almost ten times higher at 0.5000.  The optimal value for FAR 
is 0.0, so the performance of the lightning prediction algorithm 
based on this metric was much worse for the Washington, D.C. 
area.  The Probability of False Alarms (PFA) is another way to 
quantify the false alarms.  This metric compares the false alarms 
with correct rejections [Jolliffe and Stephenson, 2003] and only 
provides limited insight into forecast reliability as it is dependent 
on correct rejections in the denominator.  CCAFS/KSC had a 
PFA of 0.0769 while Washington, D.C. had a value over five 
times higher at 0.4063.  The high value can  be attributed to the 
number of false alarms resulting in the analysis of this study.  A 
PFA of 0.0 is optimal, so the lightning prediction algorithm 
showed less skill with this metric in the Washington, D.C. area. 

  

Fig. 4. 95% confidence intervals of four standard forecast metrics for 
CCAFS/KSC (red) and Washington, D.C. (blue).  The confidence intervals 

were created using the bootstrap technique with 100,000 resamples and values 
from the original samples, identified by the closed circles.  Graphic created 

using MATLAB. 

The final standard metric, True Skill Statistic (TSS), 
accounts for all possible forecast outcomes from Table I.  
CCAFS/KSC had a TSS of 0.8120, while Washington, D.C. had 
a value that was less than half that value of 0.3160.  A TSS value 
of 1.0 is desired as it indicates perfect skill, so the lightning 
prediction algorithm again performed worse for the Washington, 
D.C. area.  Fig. 4 gives the 95% confidence intervals of the four 
standard forecast metrics for CCAFS/KSC and the Washington, 
D.C. area.  This figure shows that the POD is the only metric 
with overlap for the two studies.  Overall, Fig. 4 shows with 
confidence that the standard forecast metrics for Washington, 
D.C. are statistically different than those of CCAFS/KSC. 

In addition to standard forecast metrics, the Operational 
Utility Index (OUI) was also analyzed.  This metric is a 
nonstandard metric that was created by the 45WS to determine 
the operational utility of lightning forecast algorithms [Travis, 
2015].  The OUI allows the simultaneous optimization of several 
forecast metrics and lead time.  OUI calculations combine the 
POD, TSS, PFA, and average lead time, in addition to a 
weighting scheme that reflects the operational priorities of the 
45WS.  The OUI is normalized by the sum of weights so that it 
varies from 0 to 1, with 1 being perfect.  OUI is defined as: 

   

𝑂𝑂𝑂𝑂𝑂𝑂∗ =  
(3∗𝑃𝑃𝑃𝑃𝑃𝑃)+(2∗𝑇𝑇𝑇𝑇𝑇𝑇)+�2∗� 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀��+(1∗(1−𝑃𝑃𝑃𝑃𝑃𝑃))

8
      (1) 

 

where OUI* represents the modified OUI, LeadTime is the 
average lead time of a forecast algorithm, and MaxLeadTime is 
the maximum lead time achieved by the same forecast algorithm 
for a given analysis.  This equation is slightly different than the 
OUI equation used by Travis [2015].  MaxLeadTime was put in 
the denominator of the lead time term in place of the 30 minutes 
used by Travis [2015] to allow for a more accurate 
normalization.  Using the updated OUI* equation, the OUI* 
values were recalculated for Travis [2015] from his original 
dataset.  CCAFS/KSC had a mean OUI* of 0.7111 and a median 
OUI* of 0.6848 while Washington, D.C. had a mean OUI* of 
0.5108 and a median OUI* of 0.4849.  The lower values found 
in Washington, D.C. indicate that the lightning prediction 
algorithm had less operational skill at this location.  Fig. 5 
provides the 95% confidence intervals for the OUI* values at 
CCAFS/KSC and Washington, D.C. and shows no overlap of 
the mean OUI* values for the two studies.  Only the far edges of 
the 95% confidence intervals are near one another, indicating 
that the OUI* value found for Washington, D.C. is not 
statistically similar to the value for CCAFS/KSC.  Assuming 
lead time and maximum lead time being equal, Washington, 
D.C. has the lower POD, lower TSS, and higher PFA which all 
act to lower the OUI*. The PFA for Washington, D.C. is much 
higher due to the high number of false alarms (26% of the 
dataset). This finding implies that the Travis [2015] criteria is 
too easily met in the Washington, D.C. area and that the 
threshold for Z should be higher than 36.5 dBZ.  Overall, none 
of the forecast metrics were close, so in terms of forecast 
metrics, the Travis [2015] lightning initiation prediction 
algorithm does not work well in the Washington, D.C. area. 
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Fig. 5. 95% confidence intervals of the mean OUI* (modified OUI) for 
CCAFS/KSC (red) and Washington, D.C. (blue).  The confidence intervals 

were created using the bootstrap technique with 100,000 resamples and values 
from the original samples, identified by the closed circles.  Graphic created 

using MATLAB. 

B. Lead Times Comparison 
Along with forecast metrics, the comparison of lead times 

found in this study and Travis [2015] provides valuable insight 
into the performance of the lightning prediction algorithm at a 
new location.  Fig. 6 provides the 95% confidence intervals for 
the mean lead times.  This figure shows that the mean lead times 
are statistically similar (indicated by significant overlap) and 
that Washington, D.C. had slightly superior lead times.  The 
same result was found for the median lead times (not pictured).  
Overall, there is no significant difference between the mean and 
median lead times for Washington D.C. and CCAFS/KSC. 

 
Fig. 6. 95% confidence intervals of the mean lead times for CCAFS/KSC 
(red) and Washington, D.C. (blue).  The confidence intervals were created 
using the bootstrap technique with 100,000 resamples and values from the 
original samples, identified by the closed circles.  Graphic created using 

MATLAB. 

 

IV. CONCLUSIONS 

A. Summary 
Lightning initiation is a danger to both life and property and 

has the potential to cause damage, injuries and even fatalities.  
Accurate forecasts of thunderstorms are vital for aviation, space 
launch, and overall public safety.  The 45WS faces the difficult 
task of determining the most accurate lightning initiation 
prediction methods to protect over $20 billion in equipment, 
facilities and over 25,000 personnel in and around 
CCAFS/KSC/PAFB [Travis, 2015].  Although useful lightning 
initiation prediction algorithms exist for this area, these methods 
can be improved and possibly applied to new locations to 
increase the forecast accuracy of lightning nationwide.  The 
45WS is especially interested in increasing the lead time of their 
lightning onset forecasting methods while maintaining good 
skill. 

Prior studies by Woodard [2011] and Thurmond [2014] 
determined that Z predictors, when used in conjunction with ZDR 
predictors, improve the forecast skill over methods that relied on 
Z alone.  Travis [2015] also confirmed that the implementation 
of dual-polarization added skill to lightning initiation forecasts.  
The highest performing lightning prediction algorithm found by 
Travis [2015] was Z ≥ 36.5 dBZ paired with ZDR  ≥ 0.31 dB both 
at the -10°C thermal level.  The results of Travis  [2015] showed 
that ZDR is the preferred dual-polarization predictor to use with 
Z for the improvement of lightning initiation forecasts due to 
elevated ZDR values indicating wet ice particles and supercooled 
water droplets.  These mixed phase hydrometeors aid in cloud 
electrification within a developing updraft, and generate a ZDR 
column as discussed in Kumjian [2013b]. 

Fig. 4 concludes with confidence that the standard forecast 
metrics for Washington, D.C. are statistically different than 
those of CCAFS/KSC.  For OUI*, Fig. 5 depicts no overlap of 
the mean OUI* values for the two studies.  The far edges of the 
95% confidence intervals are near one another, indicating that 
the Washington, D.C. value is not statistically similar to the 
value for CCAFS/KSC.  This finding implies that the Travis 
[2015] criteria are too easily met in the Washington, D.C. area 
resulting in more false alarms and that the threshold for Z should 
be higher than 36.5 dBZ.  In terms of forecast metrics, the Travis 
[2015] lightning initiation prediction algorithm does not perform 
well for the Washington, D.C. area.  Although the forecast 
metrics were different for the two studies, the lead times were 
quite similar.  Fig. 6 indicates that the mean lead times are 
statistically similar.  Ultimately, there is no significant statistical 
difference between the mean and median lead times reported in 
Washington D.C. and CCAFS/KSC.  To the authors knowledge, 
no other studies have found these same forecast metric and lead 
time results. 

The hope was that the lightning initiation thresholds would 
be similar for CCAFS/KSC and Washington, D.C. despite the 
different climates.  It was hypothesized that using temperature 
as the vertical coordinate allows the physics to be the same.  The 
heights of the electrification and charge separation occurrences 
will vary, but the temperatures will be the same.  Therefore, one 
expects the same thresholds for moisture, updraft, and cell 
volume to generate lightning, as long as temperature is used as 
the vertical coordinate.  One explanation for this difference 
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could be the role of aerosols in the electrification process and 
how this changes between differing climates.  The Washington, 
D.C. area has a much greater population density than the 
CCAFS/KSC/PAFB area according to data from the 2010 
Census [United States Census Bureau, 2010].  More people 
living in an area could be indicative of the production of more 
aerosols.  Ice nuclei (aerosols) could facilitate more charge 
separation in the D.C. urban environment where more aerosols 
are present than the tropical environment found along the central 
coast of Florida. 

The differing forcing mechanisms present in central Florida 
and Washington, D.C. could also provide insight into the 
lightning prediction algorithm performance differences.  
Washington, D.C. is characterized as a baroclinic environment 
while Florida is more barotropic.  Distinct air mass regions exist 
within baroclinic environments and fronts separate the warmer 
from colder air causing clear density gradients.  Low pressure 
troughs (mid-latitude cyclones) and the polar jet can also be 
found in a baroclinic environment as this environment is 
typically located in the mid-latitudes.  Simply put, the 
atmosphere is out of balance in a baroclinic environment 
[Ahrens, 2014; Wallace and Hobbs, 2006].  In contrast, 
barotropic regions are characterized by a lack of fronts and 
uniform temperature distribution.  The southeastern United 
States in the summer where each day brings about the same 
weather is the ideal example of a barotropic environment. 

The results of this study conclude that the lightning initiation 
prediction algorithm from Travis [2015] does not perform well 
for the Washington, D.C. area.  This implies that one lightning 
initiation prediction algorithm cannot be applied across the 
entire national NEXRAD network.  The lightning initiation 
prediction algorithm must be modified depending on climate. 

B. Future Work 
Although this study provided new insight into the difficult 

problem of forecasting lightning initiation, more work must be 
done to further investigate this challenging task.  To increase the 
overall confidence level of this study, the convective cell dataset 
could be expanded beyond 100 cases.  For simplification of this 
study, which would allow for the analysis of more convective 
cells, the manual analysis process of using GR2Analyst could be 
automated.  More specifically, a Storm Cell Identification and 
Tracking (SCIT) algorithm could be developed.  This study 
could also be expanded by testing the lightning initiation 
prediction algorithm in different geographical locations such as 
the mountains, inland plains, desert, or Pacific Coast.  
Additionally, this study could be recreated using a different 
location’s LMA network (e.g. Oklahoma, Alabama). 

Further research could be conducted on this topic by 
including additional dual-polarization parameters, specifically 
Level-III products such as the Hydrometer Classification 
Algorithm (HCA).  Since the presence of graupel and ice 
particles are necessary to the cloud charging process, 
identification of these hydrometeors could be helpful for 
forecasting lightning initiation.  An algorithm similar to the one 
used for lightning cessation in Patton [2017] could potentially 
be modified to create a new method for the prediction of 
lightning initiation.  In addition to the inclusion of different dual-
polarization parameters, the Z and ZDR thresholds currently used 

could be adjusted and retested.  This approach would help 
determine the optimal values for the Washington, D.C. area as 
the current thresholds are too low and were too easily met.  
Although the results of this study highlight the applicability of a 
current lightning initiation prediction algorithm, additional 
research must be conducted to continue the improvement of 
lightning initiation forecasts. 
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