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Abstract—This study verifies the probabilistic lightning 
cessation model developed by Joseph Patton [2017] at Florida 
State University for use by the U.S. Air Force’s 45th Weather 
Squadron at Cape Canaveral Air Force Station (CCAFS) and 
NASA Kennedy Space Center (KSC). The Washington, D.C. 
greater metropolitan area, which presents a climate different to 
that of central Florida, was chosen as the domain of study. Dual-
polarization radar and Lightning Mapping Array data were used 
to track 47 isolated, warm season thunderstorms in the greater 
metropolitan Washington D.C. area. The algorithm incorporates 
the presence of graupel at four isothermal levels, maximum 
reflectivity, and composite reflectivity using a bootstrapped 
generalized linear model. The model was tested for the 95.0%, 
97.5%, and 99.0% probability thresholds. Performance statistics 
show that the model revealed notable skill in the Washington, D.C. 
area, yet not to the desired level as indicated by the model’s 
performance in central Florida. 

Keywords—dual-polarization radar, Lightning Mapping Array, 
lightning cessation, forecasting lightning 

I. INTRODUCTION  
The most dangerous periods for lightning-induced injury or 

fatality coincide with not just the first lightning flash, but also 
the last [Holle, 1998].  As a storm appears to be dissipating, the 
perceived lightning threat diminishes.  Often this occurs 
prematurely, and outdoor activity is resumed before the 
lightning potential has fully dissipated.  Miscalculations of the 
timing of lightning cessation has resulted in avoidable 
casualties.   

A recent study by Patton [2017] investigated a new 
probabilistic strategy for predicting lightning cessation.  His 
model was designed for use by the 45th Weather Squadron (45 
WS) at Cape Canaveral Air Force Station (CCAFS)/Kennedy 
Space Center (KSC). The 45 WS utilizes lightning watches to 

forecast the potential for lightning with a desired lead-time of 30 
min; these alerts prompt resource protection measures to ensure 
base safety and operational mission success. Once lightning is 
detected on station or if lightning is imminent, a lightning 
warning is issued, notifying base personnel and halting 
operations. Since there is not much skillful guidance for 
forecasting the end of lightning occurrence, after-the-fact 
analysis has shown that the 45 WS lightning warnings remain 
active too long.  This is costly due to lost productivity of outside 
workers, which can delay preparation for space launch and 
eventually even the space launch schedule.  

Patton’s [2017] probabilistic approach sought to improve the 
timing precision of the last flash occurrence. This improvement 
would allow lightning advisories to be canceled sooner and with 
more confidence.  Patton developed a generalized linear model 
(GLM) in the form of a best-fit logistic regression.  The idea was 
to designate weights for radar parameters of statistical 
significance to generate probabilistic guidance for total lightning 
occurrence. A database of 148 isolated, warm season 
thunderstorm cases were used in his study. Congruent with 
recent lightning cessation studies by Preston and Fuelberg 
[2015] and Davey and Fuelberg [2017], dual-polarization radar 
and a three-dimensional lightning mapping system were 
employed. Additionally, similar radar parameters were tested, 
with an emphasis on identifying parameters in the Mixed-Phase 
(MP) region of the cloud. The MP region is defined as the region 
between the 0◦C and approximately -20◦C isothermal levels 
where supercooled water droplets, graupel, and ice crystals 
coexist [Preston and Fuelberg, 2015].  

Non-Inductive Charging (NIC) theory focuses on the MP 
region, and NIC is deemed one of the most widely accepted 
electrification methods to date. NIC theory describes a process 
involving melting and temperature gradients associated with 
interactions among graupel, ice crystals, and supercooled water 
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droplets [Takahashi, 1978].  During the non-inductive 
electrification process, large scale separation of charged 
particles occurs due to gravity [Rakov, 2016]. Ice particles and 
supercooled water droplets are also mobilized within the cloud. 
Following the schematic in Fig. 1, these particles collide with 
individual graupel particles and retain the charge of the opposite 
species [Zhang et al., 1991]. Typically, ice crystals develop a 
positive charge, while the graupel exhibits a negative charge. 
Therefore, the MP region and the presence of graupel within it 
play a key role in the lightning electrification and subsequently 
lightning cessation processes. 

Consequently, Patton’s [2017] study focused on these 
components of NIC theory.  He used the dual-polarization 
derived Hydrometeor Classification Algorithm (HCA) product 
to determine graupel presence at the -5oC, -10oC, -15oC, and -
20oC levels. In addition, maximum reflectivity values at 0oC as 
well as the maximum composite reflectivity values were 
incorporated into the GLM.  A bootstrapped version of the GLM 
shortened the presently used 45 WS wait time of 15 min after 
the last flash for forecasting lightning cessation. This result was 
consistent for the 95.0%, 97.5%, and 99.0% probability 
thresholds.  The recommended probability threshold was the 
97.5% threshold since it provided the optimal balance of time 
savings and a low false alarm ratio. 

A better understanding of how this model performs can be 
achieved by testing this method in a climate different to that of 
central Florida.  This study will verify Patton’s lightning 
cessation model on a set of isolated thunderstorm cases in and 
around the Washington, D.C.  area.  Evaluating and comparing 
the results of this model in the new environment will provide 
insight into the model's versatility and efficacy.  Consistent 
results will lend credence to the model's effectiveness and build 
confidence in the 45 WS's use of the method 
operationally.  With significant positive results, these findings 
may even contribute to the eventual implementation of a similar 
algorithm in the Next Generation Radar (NEXRAD) radar 
network.  Model discrepancies will also provide valuable 
information by exposing model vulnerabilities in a climate 
different to that of central Florida. 

 

Fig. 1. Conceptual schematic of the NIC. Graupel particles interact with ice 
crystals in the presence of supercooled water droplets within the MP region.  

II. DATA AND METHODOLOGY 

A. Data 
Patton’s GLM was tested utilizing four dual-polarization 

Weather Surveillance Radar, 1988, Doppler (WSR-88D) radars 
from the National Weather Service in and around the 
Washington, D.C. area. The primary and preferred radar, based 
on its proximity to the domain of study, is located in Sterling, 
VA (KLWX).  The three alternate radars are located in Dover 
AFB, DE (KDOX), College State, PA (KCCX), and 
Norfolk/Richmond, VA (KAKQ).  

In addition, the New Mexico Tech Washington, D.C. 
Lightning Mapping Array (DCLMA) network was used to 
collect archived lightning flash data for each of the thunderstorm 
cases. The Lightning Mapping Array (LMA) network functions 
similar to the Second Generation Lightning Detection and 
Ranging (LDAR-II) network [Poehler and Lennon, 1979; Maier 
et al., 1995; Roeder, 2010] located at KSC and used in Patton’s 
[2017] study.  Patterned after the LDAR-II system, the New 
Mexico Tech LMA pinpoints the location of radiation using a 
GPS-based time of arrival technique to locate sources of very 
high frequency radiation.  Multiple stations are utilized to 
identify lightning channels in three-dimensional space. This 
allows both intra-cloud (IC) flash channels and cloud-to-ground 
(CG) upper channels to be captured in addition to CG strikes 
[Rison et al. 1991; Krehbiel et al. 2000]. 

An initial database of 135 warm season thunderstorm cases 
from 2012-17 was acquired using the DCLMA archives for 
lightning data and the National Centers for Environmental 
Information archives for Level-II and Level-III radar data. These 
thunderstorm cases were further refined to 47 cases by using an 
event ranking system that established limiting criteria.  Seven 
limiting criteria were selected for case elimination: cells with 
non-isolated, severe, or linear convective characteristics, cells 
exceeding an “effective distance” of 110 km from the radar and 
100 km from LMA network, and poor health of the radar and 
LMA network. The spatial distribution of the final 47 cases is 
shown in Fig. 2.  

 

Fig. 2. Spatial distribution of the 47 isolated thunderstorm cases within the two 
designated LMA and KLWX radar range rings. 
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B. Methodology 
Once a refined set of lightning cessation cases was collected, 

the time of lightning cessation, or the minute of the last recorded 
flash, was determined for each of the 47 cases.  To ensure 
lightning flashes detected via the LMA network corresponded to 
the appropriate thunderstorm cell, hourly LMA images were 
used as a first glance comparison tool. Thereafter, MATLAB 
software [MATLAB, 2017] was used to pinpoint the precise 
time and location of the last lightning flash using the LMA data.  

Each of the 47 lightning cessation cases were analyzed using 
the lightning cessation predictive model developed by Patton 
[2017].  Patton’s recommended method for lightning cessation 
utilizes a bootstrapped GLM that incorporates six statistically 
significant predictor values (Table 1) and their corresponding 
coefficient values (Table 2).  Predictor values at a specific time 
interval are input into the GLM equation given by Eq. 1 which 
generates the probability for lightning cessation at that time.   

For this study in Washington D.C., thunderstorm cells were 
observed for a duration of 33 min, 16 min before and after 
observed lightning cessation.  The storms were manually tracked 
at scanning intervals between 3 to 5 minutes, depending on the 
current radar Volume Coverage Pattern (VCP).  At each time 
interval, radar parameters were collected at six isothermal 
levels: 0oC, -5oC, -10oC, -15oC, and -20oC. These temperature 
levels were determined using Sterling, VA (KIAD) 00 UTC 
analyzed atmospheric sounding text data from the University of 
Wyoming's Atmospheric Science Department.  The height 
corresponding to each isothermal level was recorded for each of 
the 47 cases.  Since the height variation for each level was 
minimal (a maximum height variation of 2 kft), values for each 
isothermal height level were averaged.  Furthermore, isothermal 
height levels were converted to isothermal layers for ease of 
manual analysis (Table 3). 

TABLE I.   

a. The six predictor radar parameters used in Patton’s bootstrapped GLM [2017]. 

TABLE II.   

Parameter (xi) 
Median Coefficient 

Value (ci) 
Maximum reflectivity (dBZ) at Composite -0.2472 

Maximum reflectivity (dBZ) at 0°C -0.0637 
Graupel presence (1 or 0) at -5°C -1.1189 

Graupel presence (1 or 0) at -10°C -0.8548 
Graupel presence (1 or 0) at -15°C -0.8072 
Graupel presence (1 or 0) at -20°C -0.9997 

Intercept (c0) 16.0826 
a. The six predictor coefficient values used in Patton’s bootstrapped GLM [2017]. 

TABLE III.   

 

 Radar parameters were collected for each radar scan within 
the allotted time and grouped into 4-min bins.  Tracking and 
analysis of radar data was done manually via GRLevelX 
software. Although manual analysis introduces the possibility of 
human error, storms were triple checked to ensure 
accuracy.  Additionally, multiple radars were employed to 
ensure consistency and to fill in brief time gaps in radar data.   

Predictor values incorporated into the GLM were extracted 
from dual-polarization radar data.  Level-II and Level-III radar 
data downloaded from National Centers for Environmental 
Information (NCEI) were ingested and tracked manually via 
GRLevelX software. GRLevelX was developed by Gibson 
Ridge Software, LLC, and features a high-speed visual interface 
for radar data displayed on a high resolution radial grid (1 km x 
1◦ x 230 km with 256 data levels).  First, Level-III radar data 
was collected.  GRLevel3 software was employed to analyze 
HCA and composite reflectivity values using a plan position 

Level Parameter (xi) 

Composite (maximum) Maximum reflectivity (dBZ) 
0°C Maximum reflectivity (dBZ) 
-5°C Graupel presence (1 or 0) 

-10°C Graupel presence (1 or 0) 

-15°C Graupel presence (1 or 0) 

-20°C Graupel presence (1 or 0) 

Temperature levels Isothermal Layers (ft.) 

0°C 13,000-14,000 
-5°C 14,000-18,000 

-10°C 18,000-21,000 
-15°C 21,000-23,000 
-20°C 23,000-26,000 

Fig.4. KDOX radar image taken at 2206 UTC, prior to lightning cessation. 
Composite reflectivity (left) and HCA (right) at the 3.5o elevation angle. 
Radar parameters displayed using GrLevel3 2-panel view. 

Fig. 3. KDOX radar image taken at 2206 UTC, prior to lightning cessation. 
HCA values displayed using GrLevel3 4-panel view, each panel showing a 
different elevation angle: 0.9o (top left), 1.5o (top right), 1.8o (bottom left), 
2.5o (bottom right). 
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indicator display.  GRLevel3 offers a multi-panel viewing 
platform that was utilized for analyzing Level-III data quickly 
and efficiently.  Fig. 3 displays an example four-panel view of 
HCA at four separate elevation angles using KDOX radar.  Fig. 
4 displays composite reflectivity and HCA at the 3.5o elevation 
angle using KLWX radar.   

 HCA values were analyzed at each available elevation 
angle.  The required elevation angles were determined based on 
the estimated thermal layers listed in Table 3.  The HCA color 
pallet was customized to facilitate the graupel identification 
process; graupel presence is represented by the bright red color 
as depicted in Fig. 3 and Fig. 4.  The alternate radars (e.g. 
KDOX, KCCX, KAKQ) were employed to collect the 
remaining HCA data since the elevation angles for HCA using 
KLWX did not typically encompass the isothermal heights 
beyond -10oC.  In this case, KDOX was used to identify graupel 
presence in the remaining three elevation angles required for 
analysis (Fig. 3). 

After Level-III radar data was acquired, Level-II maximum 
reflectivity values at 0oC were collected.  GR2Analyst software 
was used to visualize the data, and the cross-section feature was 
implemented to analyze the data.  Fig. 5 shows the layout of the 
cross-section feature with height and horizontal distance 
displayed on the vertical and horizontal axes, 
respectively.  Toggle buttons in the right panel under “position” 
and “swing” were utilized as tools to scan through each 
thunderstorm cell and pinpoint the maximum reflectivity value 
at the 0oC level.  

Following analysis, 4-minute binned data were interpolated 
to 1-min intervals by adopting a cubic Hermite spline 
interpolation method.  This method utilizes a piecewise, 
continuous function comprised of third order polynomials.  Due 
to its piecewise construct, cubic spline interpolation prevents 
Runge's phenomenon, a manifestation of artificial oscillations in 
the function due to higher order polynomial interpolation.  The 
interpolated value at a query point is based on a shape-
preserving piecewise cubic interpolation of the values at 
neighboring grid points.  Therefore, cubic spline interpolation 

allows for a smoother curve that is a better representation of 
what is observed in nature, while still maintaining its true 
shape.   

III. ANALYSIS AND RESULTS 
Two approaches were used to evaluate the performance 

results and calculate the verification statistics of Patton’s [2017] 
GLM in the Washington, D.C. area. The first approach ingests 
all 1,551 minutes of data, and then designates a forecast 
outcome for each minute/observation in accordance with Table 
IV. Probability thresholds were set to indicate that above these 
threshold values, the model predicted lightning cessation. 
Below these probability thresholds, lightning was predicted to 
still be ongoing. Three threshold probabilities were selected to 
match that of Patton: 95.0%, 97.5%, and 99.0%. These 
thresholds allow the model to be tested, and the performance 
metrics to be determined. 

For the first approach, every minute observation was 
categorized as either a hit, miss, false alarm, or correct null in 
accordance with Table IV.  A false alarm corresponds to the 
prediction of lightning cessation when lightning is still ongoing. 
This is the most dangerous case in terms of safety. A hit refers 
to an observation/minute which indicates lightning cessation is 
correctly predicted. In contrast, a miss refers to the event in 
which lightning cessation is not forecast, but lightning has 
already ended. Finally, the correct null refers to an observation 
that indicates lightning is ongoing, and the model correctly 
forbears the prediction of lightning cessation. 

TABLE IV. 

Once the forecast metrics for the data were determined, a 
set of verification measures defined by Equations 2-6 were 
calculated. These measures were used to determine the skill of 
the model. Bootstrapped results established a 95% confidence 
interval depicting the performance statistics’ variability. The 
Probability of Detection (POD), or hit rate, refers to the 
proportion of lightning cessation events that were correctly 
forecasted [Donaldson et al., 1975; Jolliffe and Stephenson, 
2012] and is defined as: 

With regards to the POD, a value close to 1.0 is desired and 
conveys that there were minimal missed forecasts in relation to 
hit forecasts.  This means the model is correctly detecting and 
predicting lightning cessation. It is important to note that the 
POD does not take into account the false alarms and should 
therefore not be used as the sole method for determining the 
skill of a forecast. The False Alarm Ratio (FAR) refers to the 
probability of a false alarm given that an event was forecast 
[Donaldson et al., 1975; Jolliffe and Stephenson, 2012]. In 
terms of lightning cessation, the FAR corresponds to the Fig. 5. Example GR2Analyst radar cross-section of reflectivity of a 

thunderstorm cell. 
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probability of forecasting lightning cessation when lightning is 
still ongoing.  The FAR is defined as: 

FAR values range from 0.0 to 1.0. The ideal FAR is 0.0, 
signifying that the number of false alarms is limited. Similar to 
the POD, the FAR should not be used alone to measure the skill 
of a forecast due to the strong dependence on the number of hits. 
In this case, rare events will score higher than random forecasts 
of common events, and thus is deemed inequitable. In this study 
an equitable measure is one that gives all random forecasting 
systems the same score [Gandin and Murphy, 1992]. This 
provides a no-skill baseline against which a forecaster can be 
examined in contrast to have skill. While the use of FAR alone 
is inequitable, using FAR and POD conjointly can provide a 
more accurate measure of the skill of the model; a perfect skill 
score would have a FAR of 0.0 and a POD of 1.0. The POD 
values for all probability thresholds were significantly lower for 
the Washington, D.C. area compared to central Florida.  Results 
show that POD values were not contained within the 
bootstrapped 95th percentile ranges (Fig. 6).  However, the 
FARs for all probability thresholds corresponding to central 
Florida were contained within the error bars corresponding to 
the Washington, D.C. area. Therefore, although the model has 
a low POD for the Washington, D.C. area, low FARs reveal that 
the model tends to evade the most dangerous outcome by 
waiting until lightning ceases to safely predict cessation. 

Heidke Skill Score (HSS) and True Skill Statistic (TSS) are 
verification measures that provide useful stand-alone 
performance statistics of the dataset.  The HSS is a measure of 
the fractional improvement of the forecast over the standard 
forecast, chance [Jolliffe and Stephenson, 2012; Murphy and 
Daan, 1985]. This measure utilizes a performance variable, 
namely the Expected Correct (EXPCOR), that incorporates all 
possible forecast metrics as well as the total number of events. 
EXPCOR is defined as: 

EXPCOR represents the number of forecasts expected to verify 
based on chance.  HSS is defined as: 

 
The sum of hits and correct nulls in the numerator represents 

the number of times that the forecast matches the actual 
observation. HSS values range from −∞ to 1.0; a perfect forecast 
would obtain a score of 1.0. Alternatively, random forecasts 
would be awarded a score of 0.0. The TSS, also known as the 
Peirce Skill Score, is a verification measure that takes all event 
outcomes outlined in Table 4 into consideration [Flueck, 1987; 
Jolliffe and Stephenson, 2012; Murphy and Daan, 1985; Peirce, 
1884]. The TSS is defined as: 

 

 

TSS values range from -1.0 to 1.0 with a desired value of 
1.0. For rare events, the number of correct nulls is large and TSS 
is weighted accordingly. Both TSS and HSS are considered truly 
equitable, and will output an expected score of zero for both 
random and constant forecasts. As equitable, stand-alone 
measures these statistics are the most valuable. Thus, they will 
be emphasized in this study. 

The TSS values for all three probability thresholds for the 
Washington, D.C. area were approximately half the TSS values 
for central Florida (Fig. 7).  Thus, the TSS values for the 
respective locations are statistically different. This confirms the 
model’s discrepancies in geographically separated areas with 
differing climates. Nevertheless, there are a few promising 
results from this approach. The consistency between the HSS 

Fig. 6. POD, FAR, and HSS performance statistics for Patton's GLM in 
Washington, D.C. and central Florida.  Washington, D.C. performance 
statistics and bootstrapped results utilizing the 95th percentile are depicted by 
the diamonds and error bars, respectively.  Central Florida performance 
statistics are overlaid in circles. 

Fig. 7. TSS performance statistics for Patton's GLM in Washington, D.C. and 
central Florida.  Washington, D.C. performance metrics and bootstrapped 
results using the 95th percentile are depicted by the blue diamonds and error 
bars, respectively.  Central Florida performance statistics are overlaid in blue 
circles. 
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values in Washington, D.C. and central Florida indicates that the 
model does convey significant skill, and is more accurate than 
the standard forecast. The 95th percentile ranges from the 
bootstrapping validated these model consistencies for the HSS 
values (Fig. 6). 

The second approach manages the data on a storm by storm 
basis, whereby the model is trying to successfully predict 
lightning cessation for each case.  Fig. 8 presents a conceptual 
timeline of a thunderstorm case from storm initiation to storm 
dissipation.  Each thunderstorm case is defined by a single 
metric: hit, miss, or false alarm. Hits, misses, and false alarms 
are all calculated based on strict time limits with respect to the 
observed time of lightning cessation. The objective is to 
correctly predict cessation within 1 to 15 minutes after lightning 
cessation is observed. This method tests the model’s 
performance against the 45 WS’s presently used wait time of 15 
min. The correct null does not exist for this approach since 
lightning cessation is observed for every case. Thus, for this 

approach there is no situation that yields a case outcome which 
correctly predicts the non-occurrence of lightning cessation.  

Similar to the results of the first approach, POD values were 
lower for all probability thresholds for the Washington, D.C. 
area in comparison to central Florida (Fig. 9). The median wait 
times were also calculated to compare to the median lag-times 
determined in Patton’s study. A 95% confidence interval was 
calculated using 10,000 resamples of the dataset to bootstrap the 
results.  The median lag-times for Washington D.C. are 12, 15, 
and 16 min for the 95.0%, 97.5%, and 99.0% probability 
thresholds, respectively (Fig. 10 and Fig. 11). These median lag-
times for the three probability thresholds in the Washington, 
D.C. area were all longer than the analyzed lag-times in central 
Florida.  The 95.0% threshold was the most promising result, 
with a 12-minute lag-time after cessation compared to the 9-
minute lag-time for central Florida.  Though this result is 
significant, the FAR for the 95.0% threshold must also be 
considered, since it displayed the highest value over all 
thresholds: 2.4% and 10.7% using the first and second approach, 
respectively. While the more conservative probability 

Fig. 8. Timeline depicting the conceptual 60-min lifetime of an isolated 
thunderstorm from lightning onset to storm dissipation (adapted from Patton 
[2017]).  The solid red line at 0 minutes corresponds to the observed time of 
lightning cessation.  The 16-minute markers prior to and following lightning 
cessation correspond to the storm observation window.  The green and blue 
arrows represent the three probability thresholds from Patton’s GLM for 
Washington, D.C. and central Florida, respectively.  Similarly, the minutes in 
red and black blocks represent the median time relative to lightning cessation 
for Washington, D.C. and central Florida, respectively. 

Fig 9. Storm by storm POD and FAR performance statistics for Patton's 
GLM in Washington, D.C. and central Florida.  Washington, D.C. 
bootstrapped performance statistics utilizing the 95th percentile are 
depicted by the diamonds and error bars.  Central Florida performance 
statistics are overlaid in circles. 

Fig 11. Median lag-times for Patton’s GLM in Washington, D.C. and central 
Florida.  Washington, D.C. bootstrapped results utilizing the 95th percentile are 
depicted by the green error bars and are overlaid with the results for central 
Florida in blue circles.  

Fig. 10. Storm by storm lag-times for thunderstorm cases in Washington, D.C.  
Markers beneath the solid red line indicate false alarms, and markers above the 
dashed black line indicate that the model waited too long to predict lightning 
cessation (beyond the 45 WS wait time of 15 min). The total 47 cases are not 
displayed because the observation time was constrained to 16 min before and 
after lightning cessation. 
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thresholds, 97.5% and 99.0%, convey no improvement from the 
45 WS presently used 15-minute wait time, these thresholds do 
offer some utility by providing the forecaster greater confidence 
that lightning has truly ended.  

IV. CONCLUSIONS 
This research verifies the probabilistic lightning cessation 

guidance developed by Patton [2017] for the 45WS’s use at 
CCAFS/KSC.  To test the model’s overall consistency and 
versatility in a climate different to that of central Florida, the 
GLM was tested in and around the greater metropolitan 
Washington, D.C. area. Using a dataset of 47 isolated 
thunderstorm cases from 2012-17, the DCLMA and dual-
polarization radar were employed to test the model’s 
performance. 

 The bootstrapped GLM utilizes six key dual-polarization 
radar predictor values: graupel presence at the -5◦C, -10◦C, -
15◦C, and -20◦C isothermal levels, maximum reflectivity at the 
0◦C level, and the maximum composite reflectivity. These 
predictor values give insight into the mechanisms that sustain 
lightning generation and the physical properties indicative of 
lightning cessation.  

The results were evaluated using two approaches to verify 
the model’s performance. The first approach considered every 
minute as an individual event with a singular outcome, while the 
second storm by storm approach considered each storm as an 
individual event with a singular outcome. Comparison of the 
performance statistics for the GLM in the Washington, D.C. area 
and in central Florida reveals that for both approaches Patton’s 
GLM did not perform as well in the Washington, D.C. area as it 
did in central Florida.  However, performance statistics show 
that the model did achieve skill and the 95.0% probability 
thresholds did shorten the wait time by 3 minutes, while still 
achieving statistically similar HSS values. Additionally, the 
storm by storm verification approach revealed that while the 
model performed worse in Washington, D.C. than central 
Florida, some of the performance statistics were still comparable 
and thus reassuring. 

These findings indicate that key radar parameters utilized by 
the model were statistically significant for predicting lightning 
cessation for both locations.  Specifically, graupel presence 
within the MP region plays a vital role in the lightning 
electrification processes according to NIC theory.  Also, the use 
of isothermal temperatures levels as opposed to height levels are 
excellent coordinates for identifying radar parameters, since 
they have consistent properties regardless of geographical 
location.  This corroborates the results of Patton [2017] and 
Preston and Fuelberg [2015] which identified graupel presence 
at specific isothermal level(s) as statistically significant.  During 
analysis, graupel presence was almost always observed 
throughout the MP region during active lightning.  Likewise, 
there was a noticeable trend in the rapid reduction of graupel 
presence promptly after observed lightning cessation.  This 
decline in graupel presence started at the upper levels, and 
percolated to the lower levels with the successive minutes after 
cessation.  This pattern complemented Patton's lightning 
cessation model well.  However, the model still tended to delay 
the forecast of lightning cessation for too long.  This can be 
attributed to the reflectivity trends of the Washington, D.C. 

storms.  The storm reflectivity values tended to be too high for 
too long, causing the model to unnecessarily delay the prediction 
of lightning cessation.  

Discrepancies in the model’s performance can possibly be 
attributed to key climate differences for the two domains of 
study as well as methodology incongruities. With regards to 
climate, the difference in forcing mechanisms, airmasses, and 
the disproportionate concentration of aerosols in the 
environment convey key climate distinctions for the two 
locations. Washington, D.C. exhibits a greater population 
density compared to that of central Florida.  This characteristic 
suggests that there are more anthropogenic aerosol emissions in 
Washington, D.C. compared to central Florida.  This exposes the 
Washington, D.C. atmosphere to a different atmospheric particle 
composition capable of interacting differently with 
hydrometeors and altering cloud electrification mechanisms. 

Furthermore, the difference in forcing mechanisms prevalent 
in the Washington, D.C. area compared to those prevalent in 
central Florida has significant impacts on lightning generation 
and cessation.  Although both locations are situated along the 
coast, the latitudinal differences create different atmospheric 
environments for storm development.  While central Florida is 
characterized as a more barotropic environment, the 
Washington, D.C. environment exhibits more baroclinic 
tendencies. Furthermore, Washington, D.C. is under 
predominantly continental air with westerly flow while central 
Florida is predominantly under maritime air with easterly and 
westerly flow.  This key difference exposes Washington, D.C. 
to more frontal systems than central Florida.  Subsequently, 
central Florida is exposed to more airmass thunderstorms due to 
sea breezes originating from both east and west coastlines.  
Selecting solely warm season thunderstorms aimed to avoid the 
baroclinic systems prevalent in spring and fall which typically 
foster more linear, multicellular, and severe thunderstorms.   

Future work is required to corroborate the conclusions of this 
thesis and to clarify the discrepancies in the performance of 
Patton’s [2017] lightning cessation predictive model in 
Washington, D.C.  This includes repeating the process by 
automating the entire analysis process, increasing the number of 
thunderstorm cases by analyzing thunderstorms from other 
geographical locations, and testing different dual-polarization 
radar parameters.  The results of this study suggest that the 
Patton [2017] method may be applicable in climates different 
from central Florida if tweaks were made to the predictor and 
coefficient values using a similar probabilistic GLM approach.  
To gain a deeper understanding of the model’s comprehensive 
skill and performance, the Patton method should be tested in 
climates both similar and dissimilar to that of central 
Florida.  Locations such as Alabama and Oklahoma which have 
active New Mexico Tech LMA networks are ideal locations for 
testing.  While the LMA in Alabama is closer to the climate in 
central Florida, especially in summer, the LMA in Oklahoma 
would provide a test in a different climate.  In addition, LMAs 
supporting field research could provide spot checks in additional 
climate scenarios. 

In conclusion, although Patton’s lightning cessation GLM 
did not achieve the same level of success in Washington, D.C. 
as it did in central Florida, the results were still promising. 



8 
 

Recommendations for action would be to retain the probabilistic 
guidance concept from Patton [2017] and develop and test 
various GLMs with a new combination of radar parameters 
extracted from the MP region.  Ideally, thunderstorms from 
select locations across the nation would be incorporated into the 
storm database. This has the potential to achieve a more 
comprehensive lightning cessation predictive model, delivering 
skillful lightning cessation guidance for locations with differing 
climates. 
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