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Abstract—This study investigates the concept of predictability 

of lightning activity and related radar-based products. Analyses of 

predictability are done using a grid-based approach, where the 

concept of predictability is represented by de-cross-correlation 

time, or the automated forecasting (nowcasting) lead time where 

the cross correlation between the nowcasted quantity and the 

concurrent lightning flash rate density observations falls to a value 

of 1/e. Four storm events occurring over the Dallas-Fort Worth 

region were used for analysis. The results show that a vertically 

integrated radar reflectivity quantity estimating mixed-phase ice 

mass yielded predictability of about 14 min. The predictability of 

radar reflectivity values greater than 30 dBZ at an altitude 

corresponding to –10oC was shown to about 10 min. Both of these 

radar-based quantities have previously been shown to be reliable 

precursors to lightning initiation. The predictability of the gridded 

lightning density fields was shown to be about 9 min. 

Keywords—Meteorological radar; Lightning; Ice; Prediction 

methods; Weather forecasting 

I. INTRODUCTION 

Accurate, spatially specific, and temporally extended short-
term automated forecasts (nowcasts) of lightning activity are of 
great interest to the preservation of life and resources for a 
multitude of applications, such as aviation, defense, and large-
venue operations. The measurement range and resolution of 
weather radar is favorable for effective nowcasting and weather 
radar data processing algorithms can estimate ice and graupel 
aloft, key components in the atmospheric electrification process. 

The usefulness of using isothermal reflectivity (e.g., 30–40 
dBZ at the –10oC environmental height) for lightning 
nowcasting is supported by many studies [Dye et al., 1989; 
Buechler and Goodman, 1990; Gremillion and Orville, 1999; 
Vincent et al., 2003; Wolf, 2006; Yang and King, 2010;. 
Woodard et al., 2012] presented a comprehensive review and 
study of recent methods involving nowcasting radar products in 
the context of lightning activity. This study found that radar 
observations within the Larsen area (i.e., areas of reflectivity 
greater than 30 dBZ at an environmental height corresponding 

to –10°C) yielded the best results in terms of skill and lead 

time. 

Carey and Rutledge [2000] modeled radar-estimated ice 
mass aloft using a simplified bulk microphysical model. Mosier 
et al. [2011] performed a comprehensive study of lightning 
nowcasting using a modified version of the Carey and Rutledge 
[2000] model that they called Vertically Integrated Ice (VII). 
Mosier et al. [2011] considered observations of VII trends in 
convective storm cells between two consecutive radar scans for 
many storms over Houston, TX, over a 10-year period. They 
found maximum lead times to lightning initiation to be about 19 
and 14 min for isothermal reflectivity (i.e., 30 dBZ at the –10oC 
environmental height) and VII, respectively. This and related 
later work by Seroka et al. [2012] used a cell-based approach for 
nowcasting and analysis, where storm cells were first identified 
before nowcasting and lightning activity was associated with 
that particular cell. 

This paper presents a study to provide insight into the best 
manner and extent to nowcast lightning activity to a desired 
location using a grid-based analysis. This study extends previous 
work by analyzing the correlation structure between nowcasts of 
radar and lightning quantities in Lagrangian space using a grid-
based approach. Whereas previous work identified and tracked 
radar features and observed a lead time to lightning activity 
associated with a particular cell, this analysis specifies a lead 
time and references that lead time to a point on the grid which 
represents the desired location at which a lightning forecast is 
made. Previous related studies have investigated the 
predictability of precipitation using nowcasts of radar 
reflectivity in a similar manner [Ruzanski and Chandrasekar, 
2012]. Given that radar reflectivity is related as well to lightning 
flash rate density, such a similar approach is used in this work. 

II. DATA AND DATA MODELS 

A. Radar Data Model 

The quantity known as Vertically Integrated Ice (VII), is 
given by Mosier et al. [2011] and is written as, 
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where ρi is the density of ice, N0 is the intercept parameter of an 
exponential size distribution of precipitation-sized ice, and H-10 
and H-40 represent the heights of the –10oC and –40oC 
environmental levels, respectively. Equation (1) represents a 
measure of mixed-phase ice mass, a quantity Carey and 
Rutledge [2000] found to be strongly correlated with total 
lightning flash rate. 

Mosier et al. [2011] followed previous work where ρi and N0 

are treated as variables with constant values 0.917 kg cm–3 and 
4 × 106 m–4, respectively. These parameters values were 
determined from a study Peterson [1997] performed in the Tiwi 
Islands region. Despite Carey and Rutledge [2000] stating the 
shortcomings and cautions of assuming constant values for 
these parameters, and noting significant intra-storm variability, 
following studies [Mosier et al., 2011; Seroka et al., 2012] have 
continued to make these assumptions. They claimed that 
making these assumptions was unrealistic but still acceptable 
for their studies that examined the relationship between 
lightning activity and trends of VII. Yet, Vamoş and Crӑciun 
[2012] showed that that significant errors in VII values may 
lead to significant errors in the trends as well. 

This study uses the hydrometeor classification algorithm 
described by Lim et al. [2005] to estimate the locations of ice 
from the radar reflectivity data. This algorithm identifies the 
following ice categories using dual-polarization variables: wet 
ice, low-density ice, high-density ice, hail, and rain–hail mix. 
Once identified, results from bulk microphysics studies are used 
to diagnose the parameters ρi and N0 in the model described by 
(1). El-Magd et al. [2000] quantitatively compared 
multiparameter radar observations collected by the CSU-CHILL 
radar and in situ observations collected by a high-volume 
particle sampler probe mounted on a T-28 aircraft to yield 
density estimates of 0.55 kg cm–3 and 0.93 kg cm–3 for graupel 
and wet hail, respectively. Milbrandt and Yau [2005] considered 
bulk densities of 0.40, 0.50, and 0.90 kg cm–3 for moderate-
density ice, high-density ice, and hail, respectively. Wainwright 
et al. [2014] developed power-law relationships between the 
intercept parameter of the exponential particle size distribution 
and the water content for the rain, hail, graupel, and snow 
hydrometeor categories within the Milbrandt and Yau 
microphysics scheme. They computed mean values of the 
intercept parameters for rain, snow, graupel, and hail from 
simulations of the Milbrandt and Yau scheme to be 1.18 × 105 
m–4, 3.95 × 108 m–4, 5.26 × 107 m–4, and 3.50 × 105 m–4, 
respectively. The parameters used in the model described by (1) 
in this study are summarized in Table I. 

B. Radar Data 

The radar data used for this study were collected by the 
Weather Service Radar-1988 Doppler (WSR-88D) radar located 
near Fort Worth, TX (ICAO location identifier KFWS). The data 
were collected during four severe storm events occurring in 
April and May of 2014. 

 

TABLE I.  RADAR DATA MODEL PARAMETERS 

Hydrometeor 

Classification 

Radar Data Model Parameter Values 

ρi (kg cm–3) N0 (m
–4) 

Wet ice 0.50 2.63 ×107 a 

Low-density ice 0.40 5.26 × 107 

High-density ice 0.55 5.26 × 107 

Hail 0.90 3.50 × 105 

Rain-Hail mix 0.93 2.34 × 105 b 

a This is the mean value of the intercept parameters for rain and graupel 

found in the work by Wainwright et al. [2014]. 
b This is the mean value of the intercept parameters for rain and hail 

found in the work by Wainwright et al. [2014]. 

TABLE II.  EVENT AND RADAR DATA MODEL PARAMETER DETAILS 

Start Date 

(YYYYMMDD) 

Details 

Start time 

(UTC) 

End time 

(UTC) 

H-10 

(km) 

H-40 

(km) 

20140403 000335 235741 5.0 9.5 

20140427 100458 160443 5.5 9.5 

20140512 101356 235808 6.0 10.0 

20140525 180517 040252 6.0 10.0 

 

The data were processed into Constant Altitude Plan Position 
Indicator (CAPPI) frames with north–south and east–west grid 
spacing of 1 km covering an area within +/-100 km of the radar 
site at altitudes from 500 m to 12 km in 500-m increments. The 
approximate temporal resolution of the data is 4.5 min. 
Reflectivity values greater than 30 dBZ from the appropriate 
CAPPI (determined to be approximately the –10oC level from 
the soundings nearest Fort Worth at 0000 UTC on the 
respective event start date) and VII values computed according 
to (1) were used for analyses. Details of the data set used for 
evaluation are given in Table II. 

C. Lightning Data 

The lightning data used for this study were collected by 
processing detections of lightning discharges from multiple 
Vaisala LS-7002 VHF remote lightning sensors [Cummins and 
Murphy 2009] part of the National Lightning Detection 
Network (NLDN) [Orville, 2008] within approximately 1000 
km of the KFWS WSR-88D radar. Distinguished intra-cloud 
and cloud-to-ground flash data were grouped together and were 
converted to flash density. The flash density data were 
processed to grids with 1 km north–south and east–west spacing 
at ground level covering an area of +/-100 km from the KFWS 
radar site. The total lightning data (i.e., aggregated cloud-to-
ground and could-to-cloud) were considered for analyses. 

D. Nowcasting Model 

The Lagrangian persistence paradigm for nowcasting was 
used for this study. The Dynamic Adaptive Radar Tracking of 
Storms (DARTS) algorithm was used to generate the estimates 
of motion of radar and lightning quantities in this study 
[Ruzanski et al., 2011]. The DARTS model is built upon a 
modified general continuity equation, and can be represented as 
a discrete linear model, given by, 
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where F(kx, ky, kt) represents the 3-D DFT coefficients of the 
observed discrete radar field sequence, U(kx, ky) represents the 
2-D DFT coefficients of the field of estimated east-west motion 
vector components, V(kx, ky) represents the 2-D DFT 
coefficients of the field of estimated north-south motion vector 
components, and S(kx, ky, kt) represents the 3-D DFT 
coefficients of the sequence of estimated evolution fields S(nx, 
ny, nt). Tx and Ty are the lengths of the horizontal and vertical 
dimensions of the observed gridded reflectivity fields, 
respectively, Tt is the number of reflectivity fields considered 
for motion estimation (i.e., the temporal span of the sequence 
of gridded reflectivity fields), and Nx and Ny are the maximum 
harmonic numbers of F(kx, ky, kt) in the horizontal and vertical 
dimensions, respectively. 

Nowcasted fields are then generated by recursively advecting 
the latest observation or nowcast according to the (temporally 
fixed or persistent during the lead time period) motion vector 
fields estimated by DARTS via a backward mapping approach 
similar to the semi-Lagrangian backward scheme described by 
the work of Germann and Zawadzki [2002]. 

III. EXPERIMENTAL PROCEDURE AND RESULTS 

Nowcasts of radar reflectivity, VII, and lightning density 
were made out to 40 min using DARTS and the backward 
advection technique, where similar tuning of DARTS model 
parameters was used for each dataset. Example observations 
and corresponding 15-min nowcasts and estimated motion 
vector fields from the Apr 3, 2014, event are shown in Fig. 1. 
This figure provides example illustrations of each data product 
observation and nowcast, highlighting the differences of these 
as well as differences in the estimated motion vector fields. 
Note that because estimating the motion vector using model 
described by (2) involves Fourier transforms, motion vectors 
will be estimated in regions where no reflectivity was observed. 

The cross-correlation coefficient used in this study is the 
estimate of the 2-D Pearson correlation coefficient, r, described 
by [Pearson, 1896], 

 𝑟 =
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where A is the nowcasted field, B is the time-aligned field of 
lightning flash rate density observations, and the overbar 
represents the sample mean. 

Cross-correlation coefficients between each frame of the 
nowcast sequences and corresponding lightning density 
observations were computed. These results are shown in Fig. 2. 
The predictability is quantified by the de-cross-correlation 
time, which is defined as the lead time where the cross-
correlation between the nowcasted quantity and the lightning 
observations decays to a value of 1/e (approximately 0.3679). 

This is considered to be the maximum lead time where the 
nowcasted quantities provide value, an approach used by 
previous related studies which investigated the predictability of 
precipitation patterns represented by radar observations 
[Ruzanski and Chandrasekar, 2012]. 

The results show that average de-cross-correlation times for 
the VII, isothermal reflectivity, and lightning are approximately 
14, 10, and 9 min, respectively. These lead times are consistent 
with the results of previous studies [Mosier et al., 2011]. As 
expected, the lightning density field nowcasts exhibit highest 
cross-correlation with the lightning density observations for 
shorter lead times, seen here to be about 5–6 min. The utility of 
nowcasting the two radar products is exhibited for longer lead 
times. The extended predictability of VII can be attributed to the 
favorable initial cross-correlation with the lightning density 
fields and the favorable spatiotemporal coherence afforded by 
the vertical integration of radar reflectivity in the computation 
of VII described by (1). The relatively short de-correlation time 
for the lightning density fields suggests less spatiotemporal 
coherence innate to the lightning density fields relative to the 
radar fields. 

IV. SUMMARY AND CONCLUSIONS 

This paper presented a study to give insight into the best data 
product to use to nowcast lightning activity to a given location. 
The extent to which these data products can be nowcasted was 
investigated via cross-correlation analysis in Lagrangian space. 
The concept of de-cross-correlation time, or the maximum 
nowcasting lead time where the cross-correlation between the 
nowcast and corresponding lightning density observation 
decays to the point where it is no longer potentially valuable as 
a predictor of lightning activity, was introduced and 
investigated. This extends the cross-correlation and grid-based 
approach used in previous research investigating the 
predictability of precipitation patterns represented by radar 
reflectivity to radar–lightning relationships in Lagrangian 
space; whereas previous studies investigating lead time to 
lightning activity afforded by radar-based products tracked 
individual storm cells and determined lead time 
observationally, this study uses a grid-based areal approach 
with specified lead times for the analyses. 

The results of the analysis of four severe storm events 
occurring over the Dallas-Fort Worth, TX, region over four 
events showed that a radar-based estimate of mixed-phase ice 
mass called the Vertically Integrated Ice, effectively a scaled 
vertical integration of radar reflectivity over altitudes related to 
lightning activity, yielded the longest average predictability 
(de-cross-correlation time) of about 14 min. The predictability 
of radar reflectivity values greater than 30 dBZ at an altitude 
corresponding to –10oC was shown to about 10 min. The 
predictability of both of these radar-based quantities were 
shown to be longer than that of the lightning density fields 
themselves. These lead times fall within the ranges of previous 
studies utilizing the cell-based analysis approach. 

These results show the potential and provide a first-order 
approximation of an extent of using nowcasts of these radar-
based quantities to nowcast lightning activity. Future work 
should include investigating a larger sample size of events at 



more and various geographical locations and investigating 
performance in an operational sense using skill scores. 
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Fig. 1. (a) Reflectivity, (c) Vertically Integrated Ice, and (e) lightning density observations with DARTS-estimated motion vector fields for 2320 UTC 03 Apr 2014. 
Corresponding nowcasts valid at 2334 UTC 03 Apr 2014 are shown in panels (b), (d), and (f), respectively. 



 
Fig. 2. Cross-correlation coefficients between nowcasts of isothermal reflectivity (ZH), Vertically Integrated Ice (VII), and lightning density (LGT) and the time-
aligned lightning observations vs. nowcast lead time. The cross-correlation coefficient values shown represent the average over the four events studied. The dashed 

horizontal line corresponds to a cross-correlation coefficient value of 1/e showing an estimate of the de-cross-correlation times (i.e., predictability) for each product. 


