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ABSTRACT 

 

Storm cell identification and tracking 

(SCIT) is a highly challenging problem with many 

potential applications.  The storm cell identification 

and tracking algorithm based on density based 

spatial clustering with applications in noise 

(DBSCAN) and joint probabilistic data association 

(JPDA) is an advanced algorithm that has been 

proposed as a solution to this problem.  It is 

designed as a method to identify and track storms 

accurately enough to spatially associate lightning 

strikes and temporally correlate lightning trends to 

storm cells and associated meteorological 

phenomena, particularly tornado genesis.  

A brief discussion of the DBSCAN and 

JPDA SCIT algorithm will be given.   The main 

focus of the paper will be an evaluation of the 

performance of this algorithm with a 

comprehensive set of proposed metrics.  The 

storm cell identification and tracking algorithm is 

applied to a diverse set of reflectivity data cases.  

The performance of the algorithm is then scored 

based on the proposed set of metrics. 

 

1.0 INTRODUCTION 

 

Identifying and tracking storm cells, 
utilizing reflectivity data from the current 
operational weather radars, is a current topic of 
concern in the meteorological community.  
Numerous algorithms have been proposed to 
address this challenging problem (Dixon and 
Weiner, 1993; Han et al., 2009; Johnson et al., 
1998; Lakshmanan, 2008; Matthews and Trostel, 
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2010; Reed and Trostel, 2011).  The SCIT 
algorithm proposed by Matthews and Trostel 
(2010) is one such novel algorithm designed to 
address the SCIT problem.  An evaluation of the 
tracking portion of this algorithm is presented in 
this paper. 
 

1.1 PROBLEM STATEMENT 

 

 An evaluation of the tracking portion of the 

SCIT algorithm proposed in Matthews and Trostel 

(2010) and Reed and Trostel (2011) is presented.   

Unfortunately, there is no current standard for 

evaluating storm cell tracking algorithms.  For this 

reason, previously proposed methods (Johnson et 

al., 1998; Lakshmanan, 2011) for scoring storm 

cell tracking algorithms are scrutinized to select a 

fair set of scoring metrics.  Furthermore, a 

description and justification of the proposed 

scoring metrics are given.  A summary of these 

metrics shall be used to draw conclusions 

regarding the performance of the algorithm under 

test. 

 

1.1 ALGORITHM DESCRIPTION 

 

 The algorithm under test is designed for 

the purpose of tracking storm cell properties, 

specifically lightning activity, over the lifecycle of 

storm cells.  It is composed of two separate parts: 

an identification algorithm and tracking algorithm.  

While only tracking performance is evaluated in 

this paper, a brief discussion of the identification 

algorithm is given since this method is used to 

identify the storm cells that are utilized in the 

tracking evaluation. 

 

 

 



1.2 STORM CELL IDENTIFICATION 

 

 The storm cell identification algorithm 

processes volumetric reflectivity data from the 

NEXRAD weather radar.  Storm cells are 

distinguished from within lower reflectivity regions 

by using a multi-threshold, three-dimensional, grid-

based DBSCAN algorithm.  For complete details 

of the identification algorithm please see Matthews 

and Trostel (2010) and Reed and Trostel (2011). 

 

1.3 STORM CELL TRACKING 

 

 The storm cell tracking algorithm under 

test is described in detail in Matthews and Trostel 

(2010) and Reed and Trostel (2011).  It is a 

particle based tracking algorithm that solves a 

series of JPDA problems.  First, a path coherence 

cost function is minimized with respect to particle 

locations.  Each particle belongs to the storm cell 

in which it lies.  These particle assignments are 

used to create a probability model for possible 

storm cell associations.  This probability model is 

then used to minimize a probability cost.   

There are two main intended advantages 

of this algorithm.  The first advantage is that it is a 

non-centroid based tracking algorithm, unlike other 

storm cell tracking algorithms.  Since storm cells 

are constantly evolving, nonlinearities in the storm 

cell centroid are likely.  The tracking algorithm 

described here attempts to find linear paths for the 

storm cell particles rather than the storm cell 

centroids.  The second advantage of the proposed 

tracking algorithm is its ability to associate a single 

storm cell at a given time with multiple storm cells 

at the next time, making it feasible to track two 

branches of a storm cell that were once part of a 

single track. 

  

2.0 PREVIOUS WORK 

 

A brief discussion of past storm cell 

identification and tracking algorithms is given.  

Further, an assessment of methods that have 

been previously suggested for scoring storm cell 

tracking algorithms is given. 

2.1 PREVIOUS STORM CELL IDENTIFICATION 

AND TRACKING ALGORITHMS 

 

A number of other storm tracking 

algorithms have been proposed.  The most well-

known of these algorithms include TITAN Dixon 

and Weiner, (1993), ETITAN (Han et al., 2009), 

and SCIT (Johnson et al., 1998).  While these 

algorithms have significant differences, all use 

centroid based tracking techniques. 

For an evaluation of the proposed tracking 

algorithm, the Johnson et al. SCIT algorithm is 

used as a benchmark for comparison.  The 

Johnson et al. (1998) SCIT algorithm uses a least 

squares method for estimating storm cell velocity 

and a simple radial search method as a basis for 

storm cell associations.  This algorithm is chosen 

as a benchmark for multiple reasons.  First, it was 

included in the WSR-88D build 9.0 of Radar 

Products Generator Software (Johnson et al., 

1998); also, it is extremely well-documented for 

implementation purposes.   

 

2.2 PREVIOUSLY PROPOSED SCORING 

METHODS 

 

 There are two main scoring methodologies 

that have been used or suggested for the purpose 

of evaluating storm cell tracking algorithms.  The 

“Percent Correct” method is used by Johnson et 

al. (1998) to evaluate the tracking performance of 

SCIT in a select set of reflectivity cases.  The 

second technique, proposed by Lakshmanan 

(2011), computes a set of bulk statistics without 

any knowledge of what the correct tracks are. 

 Johnson et al. evaluates tracking 

performance utilizing a single metric, the “percent 

correct”, which Johnson et al. describes as “simply 

the ratio of correct time associations divided by the 

total number of correct time associations.  This 

metric has the advantage of having a number with 

a known significance; i.e., no interpretation is 

required to determine the implication of the metric 

with respect to the algorithm performance.  This is, 

however, an incomplete metric.  While conveying 

the number of correct versus incorrect 



associations made, the given metric does not 

address the number of missed associations.  

Furthermore, it does not completely communicate 

how the algorithm performance is affected, e.g., 

how long the algorithm is typically able to hold 

accurate tracks.  Lastly, one major drawback to 

this methodology of scoring is that it requires a 

subjective, labor-intensive, manual labeling of 

what constitutes a correct versus incorrect 

association. 

 As a remedy to the subjective and labor 

intensive requirements of the “percent correct” 

method utilized by Johnson et al. (1998), 

Lakshmanan (2011) proposed a set of metrics 

based on bulk statistics that surpasses the 

requirement for knowing what a correct 

association is.  The obvious advantages of this 

method are that it does not require labor-intensive 

human evaluation and it does not introduce the 

element of human error or subjectivity into the 

scoring process.  For these reasons, Lakshmanan 

(2011) proposes a set of three metrics: 

1. ���� : This is the median duration, in 

seconds, of all tracks formed by a given 

tracking algorithm when applied to a given 

set of reflectivity data over a specified 

period of time. 

2. ����					 : This is the average standard 

deviation of the vertically integrated liquid 

(VIL) for all tracks with a duration greater 

than or equal to the median duration.  In 

other words, a VIL standard deviation is 

computed for each track with a duration 

greater than ���� .  The mean of these 

values is then reported. 

3. 
��
					 : This is the average root mean 

square of the linearity error over all tracks 

with duration greater than or equal to the 

median duration.  In other words, linearity 

error is computed for each track with a 

duration greater than or equal to ���� .  The 

mean of these values is reported. 

The assumptions that are used as a basis for 

choosing these metrics, respectively, are: 

1. In general, a better tracking algorithm 

should be able to maintain more tracks of 

longer duration. 

2. In general, incorrect associations create a 

mismatch in VIL creating an increase in 

VIL standard deviation along each track. 

3. In general, correct tracks shall be more 

linear. 

There are, however, a number of problems with 

the assumptions that have been made to come up 

with the given set of metrics.  First, the given 

metrics are correlated.  This is a problem for two 

reasons.  First, as track duration increases, ����					 

and 
��					 will have a natural tendency to increase, 

even if evaluating only valid tracks, i.e., tracks that 

do not have any erroneous associations.  This 

makes it very difficult to determine, as longer 

tracks are created, if ����					 and 
��					 are increasing 

because the algorithm is able to keep a longer 

valid track or is creating longer invalid tracks.  

Secondly, it is suggested that the given metrics 

should only be computed utilizing statistics from 

tracks greater than the median duration.   Since 

these metrics are correlated, the only way to fairly 

compare ����					 and 
��					 for two different algorithms 

are if they are over tracks of similar duration, 

meaning that the algorithms being compared must 

yield the same median duration and a similar 

number of tracks above this median duration.  The 

use of ����					 as a metric is also troublesome due to 

the fact that VIL is not a stationary process.  VIL is 

often used as an indication of storm cell severity 

since the two are correlated.  This means that VIL 

is expected to increase as a storm cell grows in 

severity and decrease as a storm cell decays.  As 

a result, a significant amount of deviation in VIL 

over the life cycle of a storm is expected.  The 

increased deviation of VIL in a given track that 

would result from an improper storm cell 

association would be insignificant compared to the 

overall expected deviation of the VIL.  Therefore, it 

is unlikely that any significant conclusions 

regarding the validity of storm cell tracks can be 

made using this metric.  Lastly, centroid linearity 

error, 
��					, is a poor metric as well because storm 

cell tracks can often curve over time creating 



nonlinear tracks.  Furthermore, even if a storm cell 

does follow a linear track, in general, nonlinearities 

in the storm cell centroid location are still likely to 

occur due to the nature of storm cell evolution and 

identification.  Lastly, the tracking algorithm under 

test (Matthews and Trostel, 2010; Reed and 

Trostel, 2011) is specifically designed to cope with 

the nonlinear motion of storm cell centroids, while 

the algorithm used for comparison is designed on 

the sole idea of minimizing linearity error of storm 

cell centroids over a track.  This makes linearity 

error a very unfair metric in this particular 

comparison. 

 

3.0 SCORING METHODOLOGY 

 

 The proposed scoring methodology 

utilizes several metrics to infer tracking 

performance of a storm cell tracking algorithm.  It 

requires subjective human based decisions, 

similar to the “percent correct” method of Johnson 

et al. (1998), but is slightly less labor intensive.  It 

also a more complete set of metrics, allowing 

interpretation of how missed associations and bad 

associations effect the expected duration over 

which a valid track may be kept.  The proposed 

scoring metrics are as follows: 

1. �: Total number of tracks.  This is the 

total number of tracks (lasting for at least 

three volume scans of the radar) identified 

by a tracking algorithm in a given set of 

reflectivity data over a specified period of 

time.  

2. ��: Number of tracks terminated early.  

This is the number of tracks that ended 

before it should have; e.g., the tracking 

algorithm missed an association for a 

track and terminated a track before a 

storm cell dissipated. 

3. ��:  Number of tracks that started late.  

This is the number of tracks that started 

after it should have; e.g., the tracking 

algorithm missed an association for a 

track and did not start tracking a storm cell 

when it first formed. 

4. ��:  Number of tracks containing an 

incorrect association.  This is the number 

of tracks that have improperly connected 

two separate tracks via an incorrect 

association. 

5. �:  Number of perfect tracks.  This is the 

number of tracks that did not start late, did 

not terminate early, and do not contain an 

incorrect association. 

6. ���� : Median duration of valid tracks.  This 

is the median duration over all tracks that 

are considered to be valid, i.e., any track 

that contains all valid associations and no 

incorrect associations. 

7. ���� : Total duration of valid tracks.  This 

is the sum of the durations of all tracks 

that are considered valid. 

All of the described metrics can be derived based 

on the following procedure: 

1. Each identified track is plotted one at a 

time.  All storm cells that exist in the 

volume scan prior to the start of the track 

are plotted as well as shown in Fig. 1a.  

Based on this plot, a human may make a 

subjective decision as to whether a storm 

cell identified prior to the start of a track 

should have been part of that track, thus 

determining if a track started late. 

2. Each identified track is plotted one at a 

time.  All storm cells that exist in the 

volume scan after the end of a track are 

plotted as well as shown in Fig. 1b.  Based 

on this plot, a human may make a 

subjective decision as to whether a storm 

cell identified after a track terminated 

should have been part of that track, thus 

determining if a track terminated early. 

3. Each identified track is plotted one at a 

time as shown in Fig. 1c.  Based on the 

locations of those storm cells, a human 

may make a subjective decision as to 

whether that track contains any incorrect 

associations. 

4. The number of perfect tracks may be 

derived based on the tracks that were 

determined to have started late, 



terminated early, and contained an 

incorrect association. 

5. The duration of each track is recorded.  

Any track that does not contain an 

incorrect association is used to determine 

the median duration of valid tracks. 

While this methodology requires subjective and 

labor intensive human labeling, it has a number of 

advantages.  It is less labor intensive than the 

“percent correct” method since it requires the 

human to make a set of decisions for each track 

rather than for each individual storm cell 

association.  Furthermore, it conveys a more 

complete set of metrics than the other two 

previously proposed methods giving metrics 

directly related to correctly-made associations, 

incorrectly-made associations, and missed 

associations.  Also, these metrics are not 

designed in a way that they would favor any 

particular algorithm. 

 

4.0 RESULTS 

 

Results are given for three different reflectivity 

cases.  Each case represents a different 

reflectivity scenario.  The chosen reflectivity sets 

are chosen because they are used as benchmark 

reflectivity sets in one or both of the references for 

previous scoring metrics (Johnson et al., 1998; 

Lakshmanan, 2011).   

These cases include: 

1. KMLB 3/25/1992 1600-2400 GMT 

(Mesoscale Convective System) 

2. KLSX 6/8/1993 1600-2400 GMT 

(Convective Line) 

3. KTLX 2/21/1994 1600-2400 GMT 

(Stratiform Event) 

For each reflectivity set, the baseline Johnson et 

al. SCIT tracking algorithm is run over a sweep of 

values (30, 50, 70, 90 m/s) for the algorithm 

parameter “Correlation Speed”, i.e., the single 

variable parameter in the SCIT tracking algorithm 

that may affect tracking performance. The tracking 

algorithm under test is run using a single set of 

default parameters. The tracking metrics are 

computed for each of these cases and compared.   

 
(a) 

 
(b) 

 
(c) 

Figure 1. Example plots used to determine storm cell track statistics.  

The track of interest is plotted where color represents time.  (a) Example 

plot of a track that starts late.  Storm cells at the volume scan prior to the 

start of the track of interest are shown in black. (b) Example plot of a 

track that terminates early.  Storm cells at the volume scan after the end 

of the track of interest are shown in black.  (c) Example track containing 

an incorrect association. 

 

The results for the mesoscale convective system, 

convective line, and stratiform event are shown in 

Tables 1, 2, and 3, respectively. 

 In the case of the algorithm under test, two 

values are reported for most metrics in the given 

tables because this particular tracking allows 

splitting of tracks.  Where two numbers are given, 

the first number scores across all tracks.  

However, this number is not a very accurate 

representation because if a track splits into two 

separate tracks, then the statistics of that track are 



doubly counted.  For example, suppose a track 

starts late and splits into two separate branches.  

This is a single case where a track started late, but 

it is counted as two late starts because each 

branch of the original track is counted as a 

separate track.  The second number reported for 

each metric in the tables is computed by removing 

the “double count” that results from splitting.  

Therefore, the second metric is comparable to 

those reported for the Johnson et al. SCIT tracking 

algorithm. 

 

 

 

5.0 CONCLUSIONS 

 

 The metrics chosen to evaluate and 

compare the algorithm under test with the baseline 

SCIT algorithm convey the capabilities of both 

algorithms to create and maintain tracks.  From 

the given metrics, a significant performance 

comparison can be made.  Like the “percent 

correct” method used in Johnson et al., (1998), it 

requires subjective and labor intensive human 

labeling; however, the scoring method proposed in 

this paper slightly decreases the 

 

 

Algorithm / 
Parameter 

SCIT 
30 

SCIT 
50 

SCIT 
70 

SCIT 
90 

Reed 

# Tracks 85 126 126 130 137/117 
# Early Term. 47 52 29 25 14/9 
# Late Start 50 58 36 35 24/21 

# Bad Assoc. 3 3 5 6 4/4 
# Perfect 13 46 70 79 100/87 

Median Duration 897 898 1196 1196 1198/1198 
Mean Duration 1424 1674 1807 1770 2104/2268 
Total Duration 109,682 205,963 218,615 219,513 279,823/278,932 

Table 1 Tracking Results for Mesoscale Convective System (KMLB 3/25/1992) 

 

Algorithm / 
Parameter 

SCIT 
30 

SCIT 
50 

SCIT 
70 

SCIT 
90 

Reed 

# Tracks 204 322 354 352 444/357 
# Early Term. 82 95 74 48 44/30 
# Late Start 86 91 70 50 44/33 

# Bad Assoc. 0 1 2 13 5/1 
# Perfect 76 163 22 249 354/296 

Median Duration 703 1050 1052 1079 1077/1066 
Mean Duration 1029 1228 1423 1609 1623/1570 
Total Duration 209,942 394,231 501,048 546,756 712,680/555,802 

Table 2 Tracking Results for Convective Line (KLSX 6/8/1993) 

 

Algorithm / 
Parameter 

SCIT 
30 

SCIT 
50 

SCIT 
70 

SCIT 
90 

Reed 

# Tracks 57 85 92 99 103/81 
# Early Term. 32 23 19 25 6/4 
# Late Start 26 22 16 25 11/4 

# Bad Assoc. 0 0 0 2 0/0 
# Perfect 12 47 63 60 86/73 

Median Duration 868 868 1048 1049 1745 
Mean Duration 1134 1382 1602 1653 2078 
Total Duration 64,611 117,456 147,391 160,314 168,347 

Table 3 Tracking Results for Stratiform Event (KTLX 2/21/1994) 

 



labor intensiveness of the human labeling 

process and results in a more complete set of 

metrics. 

The metrics shown in the tables above 

suggest that the algorithm under test performs 

comparably, if not significantly better, than the 

baseline SCIT algorithm.  Overall, the algorithm 

under test yielded longer valid tracks, fewer late 

starts, fewer early terminations, fewer incorrect 

associations, and more perfect tracks.  As a 

result, it is concluded that non-centroid based 

tracking yields a significant improvement over 

other tracking algorithms that used centroid-

based tracking.  An example track, from the 

tested reflectivity cases, where non-centroid 

based tracking proved particularly advantageous 

is shown in Fig. 2. 

The improved tracking performance 

yielded by the non-centroid based tracking 

technique evaluated in this paper is exploited in 

other research to track lightning densities and 

other storm cell features over the life cycle of 

various storm cells that yield tornadoes or other 

severe weather.  Lightning densities and other 

storm cell attributes may then be accurately 

correlated with severe weather phenomena. 
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