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Abstract—Electric Field Mills (EFMs) located in the region 
surrounding Cape Canaveral record the electrification of the 
atmosphere near them.  Research studying how these sensors can 
improve lightning warnings has had mixed results.  This paper 
used a convolutional recurrent neural network to predict lightning 
events near Cape Canaveral. Our method summarized the EFM 
data across a 60 second time window and then used 30 minutes of 
this summarized data to predict lightning after a 15-minute 
warning period.  The best dataset achieved a total accuracy of 
90.3% on a test dataset with a true positive rate of 77.6%, 
probability of false detection rate of 8.3%, and an Operational 
Utility Index (OUI) of 53.9%.  This EFM-only performance is 
comparable to past methods which used additional predictors and 
shows potential for lightning prediction using the EFM sensor 
array in future research. 

Keywords—Artificial neural network; Convolutional recurrent 
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Lightning prediction; Machine learning 

I. INTRODUCTION 
The area surrounding the 45th Weather Squadron (45 WS) 

and Cape Canaveral Air Force Station experiences one of the 
highest rates of lightning events in the United States between 
May and September.  This area also houses many of the space 
flight operations for US military, government, and industry.  In 
a work by Finn et al. [2010], it was estimated that $20+ billion 
in facilities, multi-billion dollar boosters/payloads, and 25,000+ 
personnel are threatened by lightning in this region.  Incidents 
such as the destruction of the Atlas-Centaur rocket in 1987 
caused by a lightning strike illustrate this threat [Christian et al., 
1989].  After this event, the Lightning Advisory Panel was 
established and launch criteria was implemented to reduce the 
risk of weather related accidents.  Additionally, a sensor array 
of 31 Electric Field Mills (EFMs) was built around the Cape 
Canaveral area to improve understanding of the electrification 
of the atmosphere near launch sites [Canright, 2001].   

This paper sought to improve upon past methods by 
considering a much larger dataset than previous research (May-
July, 2013-2016) coupled with the Lightning Detection and 
Ranging (LDAR) dataset from 2013-2016.  For 30 EFMs in the 
Cape Canaveral region the mean was calculated using a 
statistics windows (SW) of 60 seconds.  A measurement 
window (MW) of 30 minutes was used to create running 
windows of the means.  Responses were created to identify 
when lightning occurred within a 15-minute prediction window 
(PW) after a 15-minute warning window (WW).  Lastly, the 
LDAR dataset was reduced to only include lightning events that 
occurred within an 8.04 km (5 mile) radius around Cape 
Canaveral, known as the area of concern (AOC).  A 
Convolutional Recurrent Neural Network (CRNN) was trained 
and validated on a portion of the dataset and the results were 
presented in the context of previous research.  Our results show 
that models built using only EFM data can produce excellent 
short-term forecasts for the AOC when a model incorporates 
spatial and temporal context of the EFM data. 

II. BACKGROUND 
Many studies have investigated if using EFMs can improve 

lightning prediction, but results have been inconclusive.  To 
discuss past research, evaluation metrics must be clearly 
defined.  False alarm rate and false alarm ratio are often used 
interchangeably which has lead to a great deal of confusion 
[Barnes et al., 2009].  For this reason, this paper will use the 
terms Probability of False Detection (POFD) for the false 
positive rate and Probability of False Alarm (POFA) for the 
false positive ratio.  The calculations of these metrics are given 
in (2) and (3).   

Additionally, this paper will attempt to objectively compare 
past research into lightning prediction with the understanding 
that each of the past methods differ significantly in their 
methodologies. A confusion matrix shown in Table 1 is used  



 TABLE I. CONFUSION MATRIX EXAMPLE 
 

  Actual 
  Lightning No Lightning 

Predicted Lightning a b 
No Lightning c d 

 
where a is the number of true positives, b is the number of false 
positives, c is the number of false negatives, and d is the number 
of true negatives. 

The True Positive Rate (TPR), called in many papers the 
probability of detection, is the ratio of lightning events correctly 
predicted to total lightning events (1); the POFD, also false 
positive rate or false alarm rate, is the probability of non-
lightning events being predicted as lightning events (2). The 
POFA, also false positive ratio or false alarm ratio, is the ratio 
of falsely predicted lightning events to the total number of 
lighting predictions made (3).   
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The Operational Utility Index (OUI) (6) [D’Arcangelo, 
2000; Kehrer et al., 2006] is a nonstandard statistic used by the 
45 WS to weight the importance of TPR, the True Skill Statistic 
(KSS) (7) [Hanssen & Kuipers, 1965; Woodcock, 1976], and 
the POFA to their purposes.  It is a metric that has a maximum 
of 0.83 that most heavily weights the detection of lightning, 
which results in the fewest number of false negatives.  This 
reduces the likelihood of the 45 WS predicting a nonlightning 
event when one actually occurs, placing personnel and assets at 
the most risk.  

It is important to note the difference between false alarm rate 
and false alarm ratio in the OUI calculation.  In the work by 
D’Arcangelo [2000], the d-index, later called the OUI, is 
calculated using the POFA, but is referred to as the false alarm 
rate.  The OUI calculation presented in the work by Kehrer et 
al. [2006] also uses the term false alarm rate, but again uses the 
calculation for POFA presented in (3).  For this reason, this 
paper explicitly uses the terms POFA and POFD to clearly 
distinguish between the two calculations in (2) and (3).   

𝑃𝑃𝑂𝑂𝑂𝑂 =
3(𝑇𝑇𝑇𝑇𝑇𝑇) + 2(𝑇𝑇𝑇𝑇𝑇𝑇) − (𝑇𝑇𝑃𝑃𝑃𝑃𝑂𝑂)
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−
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𝑏𝑏 + 𝑑𝑑

(7) 

A large corpus of techniques to forecast lightning strikes 
have been developed by researchers, and several models have 
included EFM data as a predictor variable.  Here we examine 

recent efforts that incorporate EFM data into their predictive 
model.  The evaluation metrics for these research methods are 
presented in Table 2 (the work by Maier and Huddleston [2017] 
is omitted due to missing metrics).   

In the work by Mazany et al. [2002], a logistic regression 
model was created using four predictor variable: the 30-minute 
maximum value across all 31 EFMs (read every 5 minutes), 
Global Positioning System (GPS) Integrated Precipitable Water 
Vapor (IPWV), the change of GPS IPWV over a 9-hour period, 
and the K Index (KI).  Data was collected May-September of 
1999.  The purpose of the research was to improve the 
forecasting skill and increase the lead time of lightning 
forecasting for the Kennedy Space Center (KSC).  Their model 
calculated the probability of a lightning event and used a 
threshold of 0.7 as the determining value for a lightning 
prediction to be made.  If the model produced a value below 
0.7, then a lightning event was predicted to occur in a radius of 
37.04 km (20 nautical miles) centered as Cape Canaveral.  The 
method used a long-term prediction window (12.5h) that 
provided indication of a lightning event for the entire day.  The 
long prediction window and single season of data resulted in a 
limited number of observed lightning events in this study.  

This long prediction window differs significantly from the 
15-minute prediction window used in this paper, thus it is 
important to not directly compare metrics without considering 
the differing intents.  They evaluated their methods by counting 
the number of times a lightning event occurred/did not occur 
after 90 minutes of their model producing a value less than 0.7.  
They presented a confusion matrix where a true positive was a 
lightning event occurring more than 90 minutes after their 
model prediction fell below 0.7 and a false negative being when 
their model fell below 0.7 and no lightning event occurred 
during that day.  The results are presented in Table 2.  They 
reported that the EFM maximum value provided little benefit to 
the long-term (≥90 minute) predictability of lightning events; 
however, EFM maximum value did appear to change 
significantly immediately prior to a lightning event [Mazany et 
al., 2002].  This change partly motivated our examination of 
short-term lightning forecasting using only EFMs. 

The work by Kehrer et al. [2006] optimized the work by 
Mazany et al. [2002] for 2 hour and 9 hour forecasting intervals.  
They used a logistic regression model with four predictor 
variables gathered May-September of 2000-2003: the 30-
minute change in GPS Precipitable Water, the 7.5-hour change 
in GPS Precipitable Water, the current Precipitable Water, and 
the K-Index.  EFM data was excluded due to its low p-value 
during a forward and backward feature selection.  This indicates 
that EFM data was not significant as a predictor in a logistic 
regression model at the specified forecasting intervals.  

For the 2-hour forecasting interval, their intent was to create 
a model that provided a 30-minute warning prior to lightning 
activity for a 9.26 km (5 nautical mile) radius around Cape 
Canaveral.  The other 90 minutes of the 2-hour forecast interval 
were a processing and communication lag time to mimic real-
world delays between data gathering and warning 
implementation.  This closely resembles the intent of this paper 
and so the 2-hour forecast results are presented and the 9-hour 



results are omitted.  The comparison in Table 2 corresponds to 
these results.  Kehrer et al. [2006] discuss the potential for 
improvements to lightning forecasting by using nonlinear 
techniques, such as neural networks, and by adding predictors, 
such as EFM data. 

In the work by Murphy et al. [2008], the researchers sought 
to understand the contribution of EFMs to lightning warning 
systems.  They analyzed the 10 and 60 second means of 2 EFMs 
from June-August of 2004-2005 to predict lightning within a 
square created by extending in the cardinal directions 10 and 20 
km centered between the two EFMs.  Three conditions were 
established that triggered a warning, two of which included a 1 
kV/m or 2 kV/m threshold for the mean of the EFMs.  Once a 
condition was met, a warning was issued.   

If a lightning event occurred in the AOC after this point, it 
was considered a true positive and the time between the 
prediction and the event was recorded as the lead time.  A false 
positive was defined as a warning criterion being met but no 
subsequent lightning event occurring (no timeframe was given 
in which the event must occur).  The researchers expressed that 
the addition of the EFM data to the warning criteria resulted in 
worse performance than if they were excluded.  They 
hypothesized that the effective range of the EFMs was 
ineffective at detecting the electrification of storms whose 
center is well above sea level.  They suggest their work may be 
improved by changing the size of the AOC or changing the 
orientation of the AOC to the EFMs [Murphy et al., 2008]. 

The work by Da Silva Ferro et al. [2011] used a single EFM 
in Southeastern Brazil to determine criteria to provide lightning 
warnings.  Circular AOCs of 5, 10, and 15 km and annular 
AOCs of 0 to 5 km, 5 to 10 km, and 10 to 15 km were centered 
around the EFM.  Multiple EFM thresholds were chosen to use 
a criterion for warnings; that is, when the EFM exceeded the 
given threshold, a warning was issued. A true positive was 
recorded when a lighting event occurred within the 45-minute 
warning and a false positive if one was predicted but did not 
occur.  The circular AOCs were most pertinent to this analysis 
so only the best metrics presented for the circular AOCs and for 
a threshold of 0.9 kV/m are presented in Table 2.   

The wok by Da Silva Ferro et al. [2011] heavily emphasized 
the importance of altitude of the EFM in its ability to detect and 
predict lightning, which supports the conclusions mentioned 
above in the work of Murphy et al. [2008].  Due to the elevation 
of the EFM (800 meters above sea level) in their study, they 
saw improved TPR and POFA using one EFM with a 10 km 
AOC than other similar studies with small AOCs and more 
EFMs.  With this in mind, they suggest using a network of 
EFMs and an adjustment of the AOC to account for the 
improved metrics attained by the altitude of their sensor [Da 
Silva Ferro et al., [2011]. 

A more recent work by Maier and Huddleston [2017] 
analyzed multiple EFMs in the Cape Canaveral region and 
looked at the range of the EFM readings over 3 minute running 
windows known as envelopes.  Their intent was to detect initial 
cloud electrification and the onset of lightning.  Six stormy days 
of data in the summer of 2014 were used to predict lightning 
within 9.26 km (5 nautical miles) of Cape Canaveral.  A 

warning was issued when the range exceeded a given threshold 
of 40, 60, or 80 V/m.  This resulted in a POFD of 4.7% (6/128), 
but no other metrics or numbers were reported.   

III. DATA 
Data from May-June of 2012-16 was collected from the 

Kennedy Space Center (KSC) website 
(https://kscwxarchive.ksc.nasa.gov/). Fig. 1 shows the location 
of the 31 EFMs in the Cape Canaveral region. The EFM 
readings led to a dataset consisting of a date, time, and volts per 
meter (V/m) measured at 50 hertz.  The Lightning Detection 
and Ranging data was provided by the 45 WS and included only 
pertinent lightning events from 2013-2016.  The LDAR data 
had features date, time, and x, y, and z location of the lightning 
events.   

 

 
 

Fig. 1.    Map depicting the location of the 31 EFMs supporting the 45 WS and 
the Cape Canaveral region.  The Green identifier is the location of the center of 
the LDAR array and the center of the AOC selected for this study [Google 
Maps, 2018]. 

 
The data arrived as 30 minutes of readings for each EFM, 

but was consolidated into 30 minutes of data that contained all 
EFM readings.  Data from only 30 EFMs were useable due to 
integrity problems associated with the excluded site.  If an EFM 
did not have a reading for a given time, a ‘NaN’ value was 
recorded.  This ensured no gaps in time existed in the data, since 

https://kscwxarchive.ksc.nasa.gov/


temporal continuity is important when processing data using 
convolutional and recurrent layers later in the analysis. 

A statistics window (SW) of 60 seconds was chosen.  The 
data were separated into contiguous, non-overlapping 60 
second chunks and the mean was calculated for each chunk.  
The mean values at each of the 30 EFMs were the features for 
a given observation.  The data was then consolidated into days.   

A min-max scaling was applied across all the data using (6) 
and (7).  This scaled the mean calculations to values between    
-1 and 1 to improve network training.  Equations (6) and (7) 
calculate the min-max scaled data 𝑥𝑥𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 where M and m are 
the maximum and minimum values the scaled data can obtain 
(1 and -1 were chosen), respectively.  The min(x) and max(x) 
are the minimum and maximum values obtained across the 
entire timeframe by the EFM from which the xi was drawn. 

 

𝑥𝑥𝑖𝑖𝑠𝑠 =
𝑥𝑥𝑖𝑖 − min(𝑥𝑥)

max(𝑥𝑥) − min(𝑥𝑥)
(6) 

 
𝑥𝑥𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥𝑖𝑖𝑠𝑠 ∗ (𝑀𝑀 −𝑚𝑚) + 𝑚𝑚 (7) 

 
The missing data replaced with ‘NaN’ values in the original 

data were ignored to calculate the mean when possible.   An 
additional variable was added called the missing data indicator 
if insufficient data was available to calculate the mean.  When 
this occurred, then the value for the statistic was set to 0 and the 
missing data indicator was flipped for that EFM.  Each EFM 
had a missing-data indicator variable, resulting in an additional 
30 features per observation.   

A measurement window (MW) of 30 minutes was chosen.  
The MW was used to expand the dataset by taking a rolling 
window of SW observations that covered a time period of MW.  
This resulted in a 3-dimensional dataset: number of MW 
sequences in a day, sequence of length MW (30), and 60 
features (mean and missing-data indicator for each EFM 
location for a given SW).  These sets were expanded into 4-
dimensional datasets where the third dimension corresponded 
to each EFM location and the fourth dimension was the mean 
and the missing data indicator for a given location.  This 
provided a way to consider spatial and temporal context to each 
observation processed by the convolutional recurrent neural 
network.    

The LDAR dataset was then used to determine if lightning 
events occurred in the area of concern (AOC) during each SW.   
An AOC distance of 8.04 km (5 mile) radius around the center 
of the LDAR array near Cape Canaveral was selected.  If the 
LDAR dataset indicated a lightning event during a SW, then a 
response of ‘1’ was given; a ‘0’ value otherwise.  Based on this 
data, final target values were created by determining if a 
lightning event occurred within a 15-minute window, 15 
minutes after the last SW in the MW.  That is, a warning 
window (WW) and prediction window (PW) were both chosen 
to be 15 minutes.  The neural network attempted to predict if 
lightning would occur within the PW.  Fig. 2 depicts this setup.  
A ‘1’ response was given if a lightning event occurred within 
the AOC during the PW; ‘0’ otherwise.  

 
Fig. 2.    Diagram showing the SW, MW, WW, and PW in a timeline.  A MW 
is comprised of SWs and is used to predict an event within a PW after a WW. 

 

IV. METHODOLOGY 

A. Data Augmentation/Reduction 
While lightning is extremely common in the central Florida 

region, the number of recorded lightning events compared to 
nonlightning events in the dataset is small, approximately 10%.  
For this reason, the training data were augmented to equalize 
the number of lightning and nonlightning events by randomly 
oversampling the lightning events.  The oversampling method 
described in the work by Lemátre et al. [2017] was used to 
randomly oversample. 

The oversampling required at least one lightning event in 
each dataset. Due to neural network processing requirements 
and the structure of the data, this meant each day in the analysis 
must contain at least one lightning event. Any day that did not 
contain a lightning event was removed from the analysis.   

As mentioned earlier, if a statistic could not be calculated 
due to missing data the missing-data indicator was flipped.  If a 
dataset contained more than one-hour total of SWs that had 
flagged missing-data indicators for all 30 EFMs, then that day 
was deemed unusable and removed from the analysis. 

After these cleaning actions 138 days of data remained.  
Each day was randomly placed into a training, validation, or 
test dataset with a probability of 70% training, 15% validation, 
and 15% test.  By splitting the data by day, we ensured complete 
separation of the training, validation, and test sets with no 
overlap of the rolling windows. 

B. Model Selection and Hyperparameter Optimization 
Application of a CRNN to this problem domain was 

modeled after work done by Hefron et al. [2018], who showed 
that CRNNs significantly outperformed other neural network 
approaches to analyze electroencephalographic data.  While 
their application to workload estimation differed significantly 
from lightning prediction, there were many parallels in their 
approach.  Their data consisted of a time-sequence of voltage 
readings from 64 electrodes located at known locations on the 
surface of a participant’s scalp.  Our data consists of time 
sequences of V/m readings from sensors with known locations.  
Since both datasets were time-series data from a sensor array, a 
convolutional recurrent network fit well.   

While several models were examined during model 
building, our final model was comprised of 3 convolution layers 
and 3 recurrent layers.  The first two convolution layers learned 
features that were independent of each EFM location across 
time.  It was hypothesized that useful temporal features 
associated with atmospheric electrification should be similar at 
each EFM location, but that patterns of correlation across the 
EFM sensor array leading to lightning events at the AOC may  



 
 
Fig. 3.    This diagram depicts the structure of the neural network used in this 
analysis.  It contains two convolutional layers capturing the features seen across 
time at each EFM, one convolutional layer capturing the correlation across all 
EFMs, and three LSTM layers capturing patterns across time of the feature 
maps from the convolution layers. 

 
differ depending on weather patterns. The first two 
convolutional layers learn useful atmospheric electrification 
characteristics.  Sixteen kernels of size (3,1) striding by (1,1) 
with same padding was used with a Rectified Linear Unit 
(ReLU) activation function.  To decrease overfitting, a dropout 
layer with 30% dropout was added after these two convolution 
layers. 
The third convolution layer captured the correlation across the 
entire region of the change seen at each EFM location.  By using 
a kernel of (1,30), this layer learned the pattern of features seen 
across EFMs prior to a lightning event in the AOC and acted as 
a spatial filter.  This was thought of as the ‘state’ of the regional 
change of the EFMs.  A stride of 1 with valid padding 

 
Fig. 4.    A ROC curve shows how the TPR and the FPR change as the threshold 
used to determine classification changes.  This figure shows the point along the 
curve at which the OUI is maximized. 
 
was used with a ReLU activation.  Another dropout layer with 
30% dropout was added after this layer. 

The next three recurrent layers captured the temporal 
patterns in the temporally and spatially filtered data.  The input 
to these layers was a sequence of activation maps of the state of 
the region.  These layers used 16 Long Short Term Memory 
(LSTM) units per layer to learn the change of the state of the 
region leading up to a lightning event in the AOC.  An 
additional dropout layer was added after these layers with a 
30% dropout rate.   

The last layer was the output layer and consisted of a single 
densely connected neuron with a sigmoid activation function.  
A diagram of the model architecture is displayed in Fig. 3.  The 
Adam optimizer [Kingma and Ba, 2014]with an initial learning 
rate of 0.01 was paired with a binary cross-entropy loss 
function.  The learning rate was decayed by a factor of 0.5 when 
validation loss failed to improve over 5 epochs.  Early stopping 
was implemented with a patience of 50 monitoring validation 
loss.  The model was trained using the training dataset and the 
model that achieved the best validation loss was kept.  This 
model was used to evaluate performance using the test dataset.   

V. RESULTS AND DISCUSSION 
Using a Receiver Operating Characteristic (ROC) curve 

shown in Fig. 4, the classification threshold that resulted in the 
maximum OUI was found.  The ROC curve depicts the trade-
off between TPR and POFD as the classification-determining 
threshold changes.  Since OUI is the measure specified by the 
45 WS as being the best indicator of a quality predictor, this 
paper focused on the threshold that optimized this statistic. 
The optimal OUI was achieved at a threshold of 0.547.  Using 
this threshold, a confusion matrix was calculated and is shown 
in Fig. 5.  This threshold yielded a TPR of 77.6%, a POFD of 
8.3%, a POFA of 48.1%, and an OUI of 53.9%.  The results are 
compared to the previous research in Table 2.  When comparing 
the results of this research with the research cited in the 
introduction, it should be noted that these metrics compare 



 
Fig. 5.    This Confusion Matrix shows the number of true positives, false 
positives, false negatives, and true negatives (moving left to right, top to 
bottom) achieved on a test set.  These values were achieved by finding the 
threshold that achieved the highest OUI. 
 
research with different intents, methods, and parameters.  A  
conclusion that one method is better than another cannot be 
made; rather Table 2 highlights a number of lightning 
prediction methods’ evaluation metrics.  

Our method achieved average performance in terms of OUI 
and TPR compared to other works, but achieved a much lower 
POFD than all other methods (excluding the work by Maier and 
Huddleston [2017]) indicating this method may be the best 
method to ensure false predictions are not made.  Because our 
method was focused on short-term prediction of lightning 
events, many more prediction windows were available 
compared to other work.  This allowed us to explore fitting a 
deep neural network to the data rather than relying on more 
traditional models such as logistic regression which tend to 
better handle a smaller number of observations.  However, 
using more observations to forecast short-term warnings 
highlighted a challenge not present in the other works we 
compare our results to—our dataset was highly biased towards 
nonevent conditions.  Because of the longer prediction 
windows used in other studies, their data sources were far more 
balanced than ours.  This made model fitting more complex and 
challenging than using a balanced dataset.   

Despite the challenges, our results may provide utility 
through augmentation of long-term forecasts by reducing the 
likelihood of false detections for short-term periods that overlap 
with the long-term prediction windows.  In this way, if a long-
term forecast predicts a lightning event with a lengthy 
prediction window, our method in combination with others, 
may improve fidelity of when an event will occur.  

A shortcoming of our methodology which we intend to 
improve in the future is that our predictions are not in reference 
to the first lightning event associated with a storm.  Rather, our 
method continues to make predications even after the onset of 
a storm.  Adjusting our data processing pipeline for this factor 
and extending warning windows are left for future work. 

 
 

 
  TABLE 2. RESULTS COMPARISON 

 TPR POFD POFA OUI 
[Mazany et al., 2002] 87.5% 23.1% 30.0% 60.2% 
[Kehrer et al., 2006] 95% 47% 45.3% 45% 

[Murphy et al., 2008]a 37.7% N/A 71.0% N/A 
[Da Silva Ferro et al., 2011]a 60% N/A 41% N/A 

This Paper 77.6% 8.3% 48.1% 53.9% 
a. The works by Murphy et al. [2008] and Da Silva Ferro et al. [2011] do not use a method that results in 

the calculation of true negative events.  This makes it impossible to calculate POFD and OUI. 

VI. CONCLUSION 
With these results, it is concluded that a short-term 

predictive relationship exists between the EFM sensor array and 
lightning events in the Cape Canaveral area.  This paper shows 
that EFMs alone are capable of predicting lightning for the 
region around Cape Canaveral at a success rate comparable to 
past methods as determined by OUI, yet with significantly 
differing warning and prediction windows.  Future work should 
seek to improve these results by including data from the 
remainder of the stormy season (May-September).  
Additionally, determining the optimal time periods for MW and 
SW or including higher order statistics, time of day, and month 
of year as additional features may improve performance.  
Finally, existing methods can be fused with ours to improve the 
overall model.   
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