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Abstract 
 

Accurate storm cell identification and tracking is both a vital and challenging 
endeavor in severe weather operations.   Correct identification and tracking of storms is 
a significant component of studying any type of meteorological phenomena, including 
lightning.  A high accuracy method of identifying, differentiating, and tracking storm cells 
is proposed.  The results of the proposed Storm Cell and Tracking (SCIT) algorithm are 
applied to a new lighting association algorithm for examining lightning trends in various 
storm cells. 

The new cell identification method utilizes a density-based unsupervised 
clustering algorithm which requires no a priori knowledge of the number of existing cells.  
Storm cells are identified and stored according to the entire area of the storm cell, which 
is contrary to the current method of maintaining just a centroid point.  Knowing nearly 
the exact region a storm cell occupies is very advantageous in associating 
meteorological phenomena such as lightning with the appropriate storm cell.  As a 
result, studies on spatial lightning correlation can be performed with a much greater 
accuracy. 

In addition to improved storm cell identification, a superior tracking and 
association algorithm is presented.  As previously mentioned, storm cell areas are 
determined and tracked rather than centroid locations.  A scheme of joint probabilistic 
data association (JPDA) problems is formed to associate storm cells.  A traditional 
combinatorial optimization algorithm is performed on a particle representation of storm 
cells.  This, in turn, produces a cost matrix which reflects the overall probability of 
assignment between storms.  Lastly, two iterations of a modified Hungarian Algorithm, 
capable of making assignments that reflect splitting and merging cells, produce the final 
storm cell associations.  Overall, storm cells are identified and tracked with a much 
higher degree of fidelity that the currently implemented SCIT algorithm. 

Lightning association is then performed by ensuring that each detected lightning 
strike is located within a storm cell’s identified area.  This is much more accurate than 
the current method of associating each lightning strike with the closest storm cell 
centroid, especially for irregularly shaped and closely spaced storms.  The result is 
much more accurate lightning association and tracking of lightning trends. 



1.0 Introduction 
 
 Numerous attempts have been made to properly identify and track storm cells 
over the years[1, 3, 4, 6, 7].  This problem is difficult and somewhat ill defined.  The 
vague definition of a storm cell leaves much to be questioned.  A storm cell can be 
defined as an air mass that contains up and down drafts in convective loops, moves and 
reacts as a single entity, and/or functions as the smallest unit of a storm producing 
system.  However, storm cells often collide, move along the same front, or split.  Due to 
the poor definition of storm cells, the novel tracking approach proposed in this paper 
does not look for individual storm cells that can be associated one-to-one temporally 
between time scans.  It assumes that any given area of reflectivity identified at a point in 
time will most likely continue to exist at the next point in time.  These smaller areas 
within storm cells are then temporally associated.  The matches between these smaller 
areas are then exploited to make the best conjecture as to which storm cells are 
temporally related.  For the purpose of this paper, a storm cell shall be defined to have a 
unique reflectivity core above a given threshold that can be differentiated from other 
reflectivity cores near it, similar to the definition of a storm cell in radar meteorology. 
 
 
1.0 Previous Work 
 

Many similar algorithms have been proposed over the years to address the 
challenge of identifying and tracking storm cells.  Among these include TITAN [1], 
ETITAN [3], and Johnson’s SCIT algorithm [4].  Similar to the proposed algorithm, these 
methods locate regions of contiguous high reflectivity values and cluster them together 
to form storm cells.  SCIT, TITAN, and ETITAN, attempt to decrease the dimensionality 
of the problem by first finding contiguous reflectivity values above a specific threshold 
along one-dimensional segments, grouping those segments to form two-dimensional 
components, and then grouping these two-dimensional components to identify storm 
cells.  Storm cells are then stored and identified by a centroid position [4] or an ellipse 
[1,3] with a shape, size, and orientation similar to that of the identified storm. 

 
Numerous attempts at tracking storm cells have been made in the past couple 

decades as well.  These algorithms include matching storm cell’s centroid position with 
a simple least squares estimate of the storm cell’s expected position [4].  They also 
include matching storms based on a storm’s overlapping are with its expected coverage 
area [9].  Another approach has been to treat the tracking and association problem as a 
constrained global optimization problem based on both storm cell position and size [1, 
3]. 

 
This paper discusses an algorithm to identify and track storm cells and their 

morphology over time.  It employs a sophisticated method of identifying and storing 
storm cells by location, size, and exact shape.  It fashions an advanced examination of 
storm cell organization and exploits this information in an innovative tracking algorithm.  
By identifying and tracking storm cells by their exact area they cover, lightning 
association can be performed using a much more precise methodology. 



 
 
2.0 The Identification Algorithm 
 

The proposed algorithm processes volumetric reflectivity data from the NEXRAD 
weather radar with the purpose of identifying and tracking storm cells.  NEXRAD base 
reflectivity data is preprocessed using the WDSS-II quality control neural network to 
reduce spurious echoes from anomalous propagation and non-meteorological targets 
such as insects, birds, and ground clutter [13].  Prior to tracking, storm cell identification 
is performed on the quality controlled reflectivity in two key phases.  The first phase 
entails identification of two-dimensional components or clusters at each elevation slice 
of a volume scan.  The second phase involves vertical association of the two-
dimensional components to construct a storm cell.  The steps of first identifying two-
dimensional components and then vertically associating these components are similar 
to the identification approach of the SCIT algorithm of Johnson [4] and the TITAN 
algorithm of Dixon and Weiner [1].  This approach is usually favored for its reduction in 
dimensionality, thus increasing computational efficiency.  The algorithm described here, 
however, employs different methods in order to identify two-dimensional components 
and associate them.  These methods are what allow us to identify the exact coverage 
area of identified storms. 

 
 

2.1 Two-Dimensional Component Identification Using DBSCAN 
 

Identification of two-dimensional storm components is performed using a type of 
Density Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm [2].  
The DBSCAN algorithm is a basic density based clustering algorithm based on the 
following definitions: 

 
1. Suppose there is a set P of objects p that we desire to divide into clusters, defined 

as 
 

 
 

2. Let the ε-neighborhood of an object p, denoted by Nε(p), be defined as 
 

. 
 

That is, it includes all points q within a radius ε of object p. 
 

3. A core object is an object p with respect to the parameters ε and MinPts if 
 

 
 
That is, to be defined as a core object, an object p, must contain at least MinPts 
objects within its ε-neighborhood. 



 
4. An object q is directly density reachable from p if 

 
a.  
b.  (p is a core object) 
 

5. An object q is density reachable from p if there is a chain of directly density 
reachable objects connecting p and q. 
 

6. An object q is density connected to a point p with respect to the parameters ε and 
MinPts if there is a point o such that both p and q are density reachable from o. 
 

7. A cluster with respect to the parameters ε and MinPts is a non-empty subset C 
satisfying the following conditions 

 
a. If  and q is density reachable from p with respect to the 

parameters ε and MinPts, then  
b. If , then p is density connected to q with respect to the 

parameters ε and MinPts. 
 

8. Noise is defined as an object that does not belong to any cluster. 
 

Some difficulties with the DBSCAN method include computational complexity, 
sensitivity to user input, and the inability to find clusters of varying densities.  These 
effects are a problem in many applications that require processing of random sets of 
data; however, these effects are minimized when operating on a regular grid of data.  
Multiple grid-based DBSCAN methods such as GriDBSCAN [8] and GRIDBSCAN [12] 
have been suggested to overcome the computational complexity issue.  The regular 
polar grid of the NEXRAD data prevents this from being an issue.  Moreover, the 
definition of the ε-neighborhood may be defined in terms of grid spacing instead of the 
standard Euclidean distance metric to further simplify the computational complexity of 
DBSCAN.  The problems of sensitivity to user input and inability to find clusters of 
varying densities is addressed in this work by using various reflectivity thresholds to 
create two-dimensional components, analogous to the SCIT algorithm of Johnson [4]. 

 
For the purpose of this algorithm, the ε-neighborhood of an object is defined in 

terms of the radar’s polar grid.  It extends one range cell and one azimuth cell on either 
side of the object.  As illustrated in Fig. 1, a grid point has four other grid points in its ε-
neighborhood.  Each grid point may or may not be an object.  Given a specific 
reflectivity threshold, any grid point that has a reflectivity above that threshold is 
considered to be an object.  Any grid point that has a reflectivity below the given 
threshold is not considered to be an existing object.  As seen in Fig. 1, a grid point may 
have as many as four objects in its ε-neighborhood.  The numerical value MinPts shall 
be set to three.  Thus, in order to be a core object, a grid point must be an existing 
object and have at least three neighboring objects.  In other words, the grid point of 



interest must be equal to or above the given threshold and at least three of the four 
neighboring grid points must meet or exceed the given reflectivity threshold. 
 

 
 
Fig. 1.  The valid ε-neighborhood of a point in the DBSCAN algorithm as applied is the neighboring grid points in azimuth and range 
of the data point of interest. 
 
 There are several aspects of DBSCAN that make it an advantageous method in 
two-dimensional component creation over other proposed methods.  Unlike partitioning 
methods such as K-means, density-based clustering algorithms require no a priori 
knowledge of the number of clusters to be formed.  These other partitioning methods 
also always produce convex shapes, whereas density-based methods work better with 
arbitrary shapes [8].  Another dilemma with K-means is that the initial choice of cluster 
centroids is random and can affect the ending result.  While a method involving texture 
based image segmentation and hierarchal K-means has been suggested to remedy 
these problems [6], the hierarchal methods still require a termination criterion which can 
be difficult to determine.  These algorithms can also be very computationally expensive 
[8].   
  

As previously mentioned, other methods of creating two-dimensional 
components have been implemented in SCIT [4], TITAN [1], and ETITAN [3].  The SCIT 
method requires processing data on a radial by radial basis, creating one-dimensional 
storm segments composed of contiguous grid points with a reflectivity value above a 
given threshold.  Storm segments in adjacent radials that overlap in range are then 
combined to form two-dimensional components.  TITAN and ETITAN perform a similar 
procedure in Cartesian coordinates instead of polar coordinates.  This process is 
repeated for one (TITAN), two (ETITAN) or up to seven (SCIT) reflectivity thresholds.  
The one-dimensional segment creation creates sensitivity to variation in the reflectivity 
fields.  If one point along the radial drops below the threshold amidst the reflectivity field 
of a storm, the segment would be prematurely terminated.  To remedy this, a set of 
dropout parameters are defined for the SCIT and TITAN algorithms.  In creating a 
segment of contiguous reflectivity points above a given threshold, if a point is 
encountered whose value is below the desired threshold, but is still greater than a 
secondary dropout threshold, the segment may continue to be extended, as illustrated 
in Fig. 2.  Another parameter, the dropout count, defines the maximum number of 
contiguous dropout points allowed before a segment is terminated.  These parameters 



are subjective and can be altered at the users’ discretion.  Furthermore, a minimum 
segment length threshold is defined.  Any segment that is shorter than this threshold is 
not saved.  The proposed DBSCAN method finds contiguous points across both 
dimensions eliminating the need for both the dropout threshold and count parameters.  
If a dropout in the reflectivity field of a storm does occur, the DBSCAN method will 
simply “work around” the hole.   

 

 
 

Fig. 2.  For the SCIT algorithm, with a dropout reflectivity of 5 dBz below the search threshold and a maximum dropout count of two 
allowed, the shaded areas represent the saved portions of the following storms segments (braces indicate dropouts or termination 
values): (a) 50-dBz storm segment followed by two dropouts, thus terminating the segment (b) 45-dBz storm segment with one 
dropout, (c) 30-dBz storm segment followed by a reflectivity value less than the dropout value (termination value). 
 
Note: Reprinted from “The Storm Cell Identification and Tracking Algorthm: An Enhanced WSR-8D Algorithm” by J.T. Johnson, 
1998, Weather and Forecasting Vol. 13, pp. 263-276. 
 

 
 
Fig. 3.  A reflectivity intensity map shown above displays segments created for a 45 dBz threshold.  This scenario shows no 
segment created for a single radial in the storm.  The result is identification of two separate storms when there may only be one 
storm. 
  



 Fig. 3 shows an example where SCIT and TITAN storm segment creation is 
unsuccessful at identifying a storm component properly due to the one-dimensional 
search method.  In the figure, there is a single radial where a one-dimensional segment 
is not created due to a low reflectivity point in the center of the radial.  The proposed 
DBSCAN method would identify the above-threshold points as non-core points.  As a 
result two different components would still be created.  It should be noted, however, that 
both components would share these non-core points and would be overlapping.  
Furthermore, a different method of vertical association is applied than in the original 
SCIT algorithm that will allow for the possibility of these components to be part of one 
storm cell or two separate storm cells.  In comparison, the original SCIT algorithm does 
not have this type of flexibility in the vertical association of storm cells.  In this case, 
misidentification of the number of actual components at any given elevation would have 
a detrimental effect on the identification process.  

 
Like the SCIT algorithm, the proposed method creates two-dimensional 

components for as many as seven different reflectivity thresholds (30, 35, 40, 45, 50, 
55, 60 dBz).  As seen in Fig. 4, any higher reflectivity component would be an interior 
subset of a lower reflectivity threshold component.  This means, for example, that a 60 
dBz threshold would be located in a 55 dBz component of a larger or equal size, and 
the 55 dBz component would be located inside a 50 dBz component of larger or equal 
size, and so on.  In the SCIT algorithm, the inner most reflectivity component is saved 
while all lower reflectivity components that contain the highest reflectivity core 
component are discarded, as seen in Fig. 4b.  Unlike the SCIT algorithm, the largest 
and lowest reflectivity core component is saved while all lower reflectivity components 
containing multiple core components are discarded, as in Fig. 4a.  As a result, the inner 
most storm cells are saved while being represented by the largest possible area.   

 
Another advantage of the proposed method is that it stores the two-dimensional 

components as entire polygonal regions whereas in the SCIT algorithm, the locations of 
two-dimensional components are saved simply as weighted centroid points.  The 
additional information of the entire polygonal area of the storm will be used for more 
accurate vertical association in the second phase of the storm cell identification 
process.  Moreover, since storms are most frequently shaped as something other than a 
perfect circle, having an accurate representation of the storm area is important for 
applications that require associating storms with meteorological phenomena such as 
lightning and tornadoes.  Current methods associate phenomena based on the 
Euclidean distance from the weighted centroids of the storms.  This can be problematic 
with closely spaced storms or storms that are oddly shaped, resulting in inaccurate 
association of meteorological phenomena and storm cells.  Defining each storm by its 
actual shape means that meteorological phenomena will be more accurately 
associated. 

 



 
 
Fig. 4.  (a) The proposed algorithm saves the lowest reflectivity region that identifies the same core objects.   (b) The SCIT algorithm 
saves a centroid representing the smallest and highest reflectivity core object in the reflectivity field of a storm. 
 
 
2.2 Vertical Association of Two-Dimensional Components 
 

Once two-dimensional components have been formed via DBSCAN, they are 
vertically associated based on overlapping area, AO, as seen in Fig. 5.  Components in 
adjacent elevation angles are vertically associated when their polygonal regions overlap 
from a plan view.   Unlike the SCIT algorithm, multiple components at each elevation 
slice may belong to a single storm cell as in Fig 5.  Also, each component can belong to 
multiple storm cells.  This is a more realistic interpretation of the varying shapes of 
storm cells.  This method of vertical association also provides more accurate 
association for oddly shaped storms, specifically non-circular, vertically tilted, and 
closely spaced storms. 
 

 
Fig. 5.  A component Area1 (blue) at the lowest elevation angle overlaps with two components, Area2 (red) and Area3 (green), at the 
next highest elevation slice.  Therefore, Area1 is associated with both higher elevation components. 

 
 The vertical association process is performed starting with the highest elevation 
angle, associating each component at elevation e with one component at elevation e-1.  
Note that while components at the higher elevation may only be associated with one 

(a) (b)



component at the next lower elevation, the opposite is not true.  In other words, 
components at elevation e-1 may be associated with multiple components at elevation 
e.  This method of vertical association is adapted due to the nature of storm cell 
reflectivity fields.  In the past, other algorithms such as SCIT and TITAN have performed 
vertical association from the lowest elevation to the highest elevation.  However, as can 
be seen in Fig. 6, taken from actual NEXRAD data, the two-dimensional components 
which distinguish closely spaced storm cells tend to occur at higher elevations, while the 
reflectivity fields at lower elevations tend to blend together. 

 
The vertical association process is performed in a three step process as follows: 

 
1. For each elevation slice, starting with the highest, e = NE, each component at e is 

associated with the component at e-1 that overlaps by the largest area.  For 
example, as illustrated with the components in Fig. 7, cells would be created as 
follows: 
 

a. Cell 1: A8→A7→A6→A5→A4→A3→A2→A1 
b. Cell 2: D7→B6→C5→D4→A3→A2→A1 
c. Cell 3: C6→D5→E4→C3→A2→A1 
d. Cell 4: E5→F4→D3→B2→A1 

 
2. Suppose a component at an elevation slice e has been associated with a 

component at e-1 that already belongs to one or more existing cells.  If and only 
if the component was not associated with a component at elevation e+1, it is set 
aside temporarily. 
 

a. Component B7 is associated with A6, but A6 already belongs to Cell 1. 
b. Component C7 is associated with A6, but A6 already belongs to Cell 1. 
c. Component E7 is associated with B6, but B6 already belongs to Cell 2. 
d. Component B5 is associated with A4, but A4 already belongs to Cell 1. 
e. Component B4 is associated with A3, but A3 already belongs to Cells 1 

and 2. 
f. Component C4 is associated with A3, but A3 already belongs to Cells 1 

and 2. 
g. Component B3 is associated with A2, but A2 already belongs to Cells 1, 2, 

and 3. 
 

3. The components that are set aside are treated as follows.  If the component can 
be added to one and only one cell, it is added.  If it corresponds to more than one 
cell, it is discarded.  This reflects the fact that these multiple correspondences for 
a single cell are simply an artifact of multiple closely spaced cells and not a 
distinguishing component of any single cell.  This yields the flowing results in the 
given scenario: 
 

a. Component B7 is added to Cell 1. 
b. Component C7 is added to Cell 1. 



c. Component E7 is added to Cell 2. 
d. Component B5 is added to Cell 1. 
e. Component B4 is discarded since it could be associated with both Cells 1 

and 2.  
f. Component C4 is discarded since it could be associated with both Cells 1 

and 2. 
g. Component B3 is discarded since it could be associated with Cells 1, 2, 

and 3. 
 

 
 
Fig. 6.  (a) Plan view of closely spaced storm cells whose reflectivity fields have blended/merged at the lower elevation fields.  (b) 
Example of the same closely spaced storm cells from a side view.   In these figures, each component portrayed as the color red has 
been associated to multiple storm cells.  Each higher component that has been identified uniquely with a single storm cell has been 
assigned a different color per that storm cell. 

 

 

(a) (b) 



 
Fig. 7.  Example of vertical association of two-dimensional components to define three-dimensional storm cells.  The black 
components are discarded.  The red components belong strictly to Cell1.  The yellow components belong strictly to Cell 2.  The 
green components belong strictly to Cell 3.  The purple components belong strictly to Cell 4.  The multicolored components belong 
to multiple cells. 

 
 Once vertical association is complete, storm cell locations are represented by 
polygonal regions which are a plan view union of all the two-dimensional component 
polygons that form the three dimensional storm cells and are unique to those storm 
cells.  This means, in Fig. 7, Cell 1 would be represented by a union of components A4, 
A5, B5, A6, A7, B7, C7, and A8; Cell 2 would be represented by components D4, C5, 
B6, D7, and E7; Cell3 would be represented by components C3, E4, D5, and C6; and 
Cell 4 would be represented by components B2, D3, F4, and E5.  These polygons are 
then dilated to cover the area of the non-unique components associated with them.  
Once the polygonal regions of the storm cells have been defined, a uniform particle grid 
representation is created for each storm, as illustrated in Fig. 8, for future use in the 
tracking algorithm.  The uniform grid has spacing Δp for all storm cells in both x and y 
directions, making the number of particles in each cell a function of area. 
 

 
 

Fig. 8.  Example of particle representation of storms to be used in tracking algorithm. 
 
 

3.0 The Tracking and Association Algorithm 
 
 The proposed tracking and association algorithm forms and solves a series of 
joint probabilistic data association (JPDA) problems to temporally associate storm cells, 
while allowing for the possibility of splits and mergers.  The classic JPDA formulization 
would create a matrix of costs for associating each pair of storm cells at consecutive 
time steps based on the difference in location and/or other characteristics of those 



storm cells.  It would assume a one-to-one assignment between storm cells at two 
consecutive time steps.  The one-to-one assignment of typical JDPA methods are far 
from optimal due not only to splits and mergers that may be occurring, but also due to 
the rapid evolutionary nature of storm cells and relatively large time periods between 
complete scans. 
 
 
3.1 Initialization of Tracking and Association Algorithm 
 

The new algorithm is initialized by entering one or more velocity estimates for 
different locations in the radar area.  These estimates are entered as: 
 

          (1) 
 

where  is the location of the lth velocity estimate (in Cartesian coordinates, with the 
radar at the origin) and   is the lth velocity estimate.   is the cardinality of the set 
of input estimates.  Velocity estimates for all storm cells within the convex hull of  for 
l = 1,2,…L are then calculated via a linear two-dimensional interpolation of these given 
point estimates.  Any storm cells not within the convex hull of these point locations are 
assigned the same velocity as the nearest point at which an estimated velocity was 
given.  The source for these estimates is currently a user estimate based on a 
visualization of storm cells plotted on the same map for times t and t+1, as seen in Fig. 
9. 
 

 
 



Fig. 9.  Example of the display for a user to estimate velocities at multiple locations based on the perceived movement of storm cells 
between volume scans.  Storm cells detected at time t are displayed in red and storm cells detected at time t+1 are displayed in 
blue.  The map coordinates are in kilometers relative to the radar location. 
 
 
3.2 Velocity Estimation for a Simple Particle 
 

For any time t>t0, assume an estimate for the velocity of each existing storm cell 
is given.  These velocities are then assigned to each particle of the storm cell, that is all 
particles in a given storm cell are assumed to have equal velocities: 
 

         (2) 
 
where  is the assumed velocity of the jth particle of the ih storm cell at time t,  

 is the assumed velocity of the ith storm at time t,   is the cardinality of the set of 
storm cells at time t, and   is the cardinality of the set of particles in the ith storm at 
time t.  For example, if storm cell A is estimated to have a velocity of 30 km/hr and 
consists of 100 particles, all of those 100 particles are each estimated to have a velocity 
of 30 km/hr.  Column vectors for the velocities of all particles at time t are then defined 
as: 
 

         (3) 
 

 and  are the respective x and y components of the of the particle velocities, .  
Note, for standard notation in the remainder of this paper, particle indices will no longer 
sub-indexed by the storm cell they belong to. 
  

A set of velocity matrices for time t+1 is then computed based on the location of 
particles at time t and t+1.  The velocity matrices are defined as follows: 

 

         (4) 
 

Here,  and  are the x and y locations of the ith particle  at time t and  is 
the time elapsed between time t and time t+1. Each entry in this velocity matrix is the 
velocity that the ith particle  at time t must have in order to be at the location of the 
jth particle  at time t+1. 

 
 

3.3 Computation of Path Coherence Cost for a Simple Particle 
 
Naturally, if particle  at time t is truly a match to particle  at time t+1, 

velocities  and  should be similar in magnitude and direction; i.e., the 



velocities or paths at those times should be coherent.  A path coherence cost, CPC, is 
computed for each pair  of particles at time t and particles at time t+1.  The path 
coherence cost is a measure of the consistence in speed and direction of movement of 
the particle between positions at time t and t+1.  The cost to associate particle  at 
time t with particle  at time t+1 is: 
 

         (5) 
 

 is a penalty term for changes in direction of movement and  is a penalty 
term for changes in speed.  The penalty terms are: 
 

         (6) 
 

         
(7) 

 
The terms wD and wS are weights on the individual costs where: 
 

         (8) 
 
Here,  is the change in speed between times t and t+1 that yields the maximum 
cost for change in speed.  This path coherence function is a variation of the original 
coherence function defined by Sethi and Jain [11].  The speed penalty term has been 
modified to yield equal penalty for equal increases and decreases in speed and to 
define an allowable absolute maximum change in speed before reaching the maximum 
penalty value  of 1. 
 

Path coherence is a better measure of matching objects moving over time since 
it takes into account not only the expected position of the object at time t+1 but also the 
expected velocity.  An object’s motion cannot change instantaneously due to inertia.  
This is the concept behind path coherence.  Equal error in predicted position is not the 
same as equal error in velocity.  A path coherence cost matrix formed for each pair of 
particles at time t and t+1.  Particle matches that correspond to highly coherent paths 
have a cost value near 0 and particle matches that do not have highly coherent paths 
have a cost value near .  Any particle match that corresponds to a change in 
direction greater than 90° ( ) or a change in speed greater than  
( ) are set to have an infinite cost, eliminating the possibility of assignment. 
 
 
 
 
 



3.4 Overall Path Coherence Cost 
 
 Once a complete path coherence matrix has been created, a combinatorial 
optimization algorithm is performed on the matrix to minimize the overall path 
coherence cost in particle assignment: 
 

         (9) 
 
The matrix A is an assignment matrix containing at most a single one in each row and 
each column.  These entries represent associations made between particles at times t 
and t+1.  All other entries are zero, meaning no association is made.   

 
The optimization algorithm employed to perform the assignment operation is the 

Hungarian Method [5].  This method assumes a one-to-one assignment problem, 
making the maximum number of possible assignments while assigning no more than 
one particle at time t to one particle at time t+1 and vice versa.  In general, this means 
that if there are  particles at time t and  particles at time t+1, then the number 
of assignments that will be made is equal to .  This may not be the case if 
one or more particles cannot be assigned to any another particle.  This may occur if all 
costs associated with a particle have been set to be infinite as is often the case for 
particles belonging to new storm cells at time t+1 or dissipating storm cells at time t.  
The basics of the Hungarian algorithm are as follows. 

 
1. Assume there are Nt storms at time t and Nt+1 storms at time t+1 that need to 

be temporally correlated.  There is a different cost associated with each 
temporal assignment.  Only one storm at time t may be assigned to one storm 
at time t+1.  Create a matrix  of the associated costs.  If  , 
the maximum number of possible assignments, , will be made. 
 

2. For all rows in the cost matrix, subtract the row minimum value from all 
entries in that row. 

 
3. For all columns in the cost matrix, subtract the column minimum value from all 

entries in that column. 
 
4. Draw lines across rows and columns in such a way that all zeros are covered 

and that the minimum number of lines have been used.  If the number of lines 
just drawn is , the algorithm terminates and the zero entries 
result in the optimal one-to-one assignment solution. If the number of lines is 
greater than , proceed to step 5. 
 



5. Find the smallest entry which is not covered by the lines and subtract it from 
each entry not covered by the lines. Also add it to each entry which is covered 
by a vertical and a horizontal line. Return to step 4. 

 
 Once the particle assignment has been performed by a linear assignment 
optimization algorithm such as the Hungarian or Jacobi Auction algorithm, two 
probability matrices are formed, PA and PB.  These matrices reflect the probability that 
two storm cells are a correct match between times t and t+1.  They both have 
dimensions  where, as before,  is the number of identified storms at time 
t.  The probabilities that the ith storm  at time t and the jth storm  at time t+1 
are a match are: 
 

         (10) 
 

         (11) 
 
Here,  is the number of particles that were matched between storms  
and  at in the optimization algorithm.   
 

Both matrices are formed because PA will favor large area storms, or storms with 
more particles, and PB will favor small area storm matches, or storms with fewer 
particles.  For example, suppose a storm at time t composed of 100 points splits in two 
at time t+1 where one of the new cells is composed of 80 particles and the other is 
composed of 20 particles.  Suppose that all 100 particles are associated properly.  In 
this case, PA would have values of 80% and 20% respectively.  On the other hand, PB 
would have values of 100% in both cases.  PA is more discriminative. However PB 
detects matches that occur from splits and mergers.  In general, if PA does not indicate 
a high likelihood of a match, then PB may.  Nevertheless, PB must have an extremely 
high value to be considered valid match.  This concept is especially important in the 
event of a split or merger event in order to be sure all the proper associations are made. 
 
 Two cost matrices are formed from the probability matrices PA and PB: 
 

         (12) 
 
         (13) 

 
From these probability matrices, an initial set of storm assignments are made by 
performing only the first set of steps of the Hungarian algorithm once.  Performing only 
steps 1-3 will find optimal assignment solutions for each row by means of step 2.  Using 
step3, it will also find any secondary suboptimal solutions for each column that was not 
assigned a solution in step 2.  Note that this solution does not require a one-to-one 
assignment.  This allows for multiple associations in the event of splits.  Performing 
steps 1-3 with steps 2 and 3 reversed does the same except finding the optimal solution 



for each column and the secondary set of suboptimal solutions for each row.  This 
allows for multiple associations in the event of mergers.  Therefore, steps 1-3, in order, 
are first performed on cost matrices CA and CB.  Then, steps 1-3, with steps 2 and 3 
reversed, are performed on cost matrices CA and CB.  This creates a myriad of 
assignments, most of which are correct. 
 
 Lastly, storm cells are divided into subsets based on their previous assignment.  
For example, suppose the following assignments have been made: 
 

At At At Bt Bt Ct Ct Dt Et Ft 

At+1 Bt+1 Ct+1 Ct+1 Dt+1 Et+1 Ft+1 Gt+1 Ht+1 Ht+1 

 
The following subsets will be formed: 
 

At, Bt ↔ At+1, Bt+1, Ct+1, Dt+1 
Ct ↔ Et+1, Ft+1 

Dt ↔ Gt+1 
Et, Ft ↔ At+1, Ht+1 

 
These subsets are formed by following the chain of all combinations of assignments for 
each storm cell: 
 

At At At Bt Bt Ct Ct Dt Et Ft 

 
At+1 

 
Bt+1 

 
Ct+1 

 
Ct+1 

 
Dt+1 

 
Et+1 

 
Ft+1 

 
Gt+1 

 
Ht+1 

 
Ht+1 

 
The same particle assignment optimization as performed before on the entire set of 
storms is then performed on each storm subset.  Two sets of probabilities are computed 
as before in Eq. 12 and 12.  In order for an assignment to be valid: 

 
         (14) 

 
If this condition is not met for all assignments in the subset, then those that do not meet 
this criterion are discarded.  The remaining assignments in the subset are maintained. 
 
 
3.5 Velocity Estimation for a Storm Cell 
 
 Lastly, velocity must be estimated.  For each subset that is maintained, the 
velocity of all storms in that subset is estimated as: 
 



          (15) 
 

Here,  and  are the number of storms at times t and t+1, respectively, in the 
current subset.   and are the storm areas.  and are the weighted centroids 
of the storms and  is the time between volume scans.  If there are no splits or 
mergers occurring, the subset consists of a single storm at time t and a single storm at 
time t+1, and Eq. 12 reduces to the movement between the two weighted centroids: 
 

         (16) 
 

These velocities are then used to compute path coherence for the next time step and 
the tracking and association process is repeated. 
 
 
4.0 Lightning Association 
 
 Once storm cells have been identified and tracked, that information may be 
utilized to spatially and temporally associate lightning strikes to storm cells.  Fig. 10 
illustrates storm cells and lightning strikes during a particular time scan.  Strikes may be 
identified as originating from a particular storm cell if the strike is located within the area 
of that storm cell.  If a strike does not fall within the area of any identified storm cell, it 
still may be associated to a storm cell if it falls within a buffer zone of that storm.  This 
buffer zone is typically on the order of approximately 5 km from the outer edge of the 
storm cell perimeter.  If a lightning strike does not fall within the identified coverage area 
of any storm cell or buffer zone, the lightning strikes remains unassociated. 
 



 
Fig. 10.  Map of identified storm cells for a single NEXRAD volume scan and the corresponding lightning strikes that occurred during 
that scan. 
 
 After lightning strikes are associated, the storm cell tracking information is used 
to track temporal trends in lightning strikes.  Trends in different classifications of 
lightning, such as polarity or cloud-to-cloud versus cloud-to-ground lightning, may be 
found in relation to other meteorological phenomena such as tornadoes.  
 
 
5.0 Future Work 
 
 The proposed identification process applies the DBSCAN method in a two-
dimensional space to form two-dimensional components.  Vertical association methods 
required in the final identification of storm cells follows the standard technique of storm 
cell identification that has been applied by previous algorithms.  Applying the DBSCAN 
algorithm in three-dimensions, while decreasing computational efficiency, will eliminate 
the need for many of the parameters currently required as input to the identification 
algorithm.  The only parameters required will be those input to the DBSCAN algorithm 
and not those for vertical association of components.  This will decrease the number of 
numeric parameters required to be input by the user and decrease sensitivity to user 
input.  
 

Another implementation under consideration is Enhanced DBSCAN [10].  
Enhanced DBSCAN is a variant of the traditional DBSCAN algorithm.  It employs an 
additional parameter that allows for identification of clusters of varying densities.  In this 
application, varying densities may correspond to employing a search for storm cells of 
different reflectivity strengths, eliminating the need to perform the identification algorithm 
for multiple different thresholds.   

 



Initial efforts are being made to use this and future algorithms as a benchmark for 
design of a new highly computationally efficient computer.  Such a design would make 
the computational complexity of a three-dimensional DBSCAN algorithm very practical 
and advantageous, running the algorithm in faster than real time. 
 
 The tracking algorithm should also benefit from a highly computationally efficient 
computer.  As previously mentioned, the tracking algorithm is based on a series of 
optimization problems that minimize path coherence cost between particles.  In theory, 
decreasing the spacing between the storm cell particles, thus increasing the number of 
storm cell particles would increase the association accuracy of the algorithm.  This 
comes at a high computational cost though.  As the number of particles N increases, the 
order of complexity increases by O(N)3. 
 
 Additionally, recall the tracking algorithm is currently initialized by a set of user 
input velocities based on a visual representation of identified storms.  Velocity data from 
the radar or other independent sources could be used to initialize the algorithm, making 
it independent of a user. Velocity data may also be used in a control theory state space 
representation to constantly correct and re-estimate storm cell velocities. 
 
 The proposed algorithm shall vastly increase the accuracy of lightning 
association of current methods.  Lightning association may be applied to various 
meteorological scenarios to analyze the interrelation of lightning and other 
meteorological phenomena. 
 
 With a highly accurate storm cell identification and tracking algorithm, much more 
accurate data on storm cells may be collected to calculate all types of storm cell 
properties.  Over time, these values can be used to create a database of storm cells, 
their characteristics, and the natural phenomena they produced.  This kind of database 
would be very advantageous in identifying storm cell properties that produce severe 
phenomena such as heavy rain, high winds, tornadoes, and hail.  Specifically, collection 
of a very large database would be very valuable in employing various data mining 
techniques to make more accurate predictions with respect to severe weather 
phenomena. 
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