
 

  
Abstract— A derivation of lightning induced 

electromagnetic fields which originate from 
perfect and imperfect conductive surfaces 
upon being struck will be presented.  The 
model presented here purposely downplays 
the physics of how image theory is employed 
to account for a charge which is in the 
presence of an imperfect conductive surface.  
In turn, it adopts an approach which focuses on 
the geometry that exists between the lightning 
channel and surface ground.  In doing so, the 
proposed model formulates a solution that has 
minimized the complexity of the original 
problem while providing an approximation 
founded upon a geometric relationship.  
Hence, it has assumed that as a surface 
becomes less conductive the image channel 
which lies 180 degrees with respect to the 
return stroke begins to degrade.  As a result, 
the subsequent image current which travels 
along this channel will decrease as well.  A 
derivation of this degraded current will be 
presented along with how it influences the 
electric and magnetic fields.  It will be shown 
that as the image current’s magnitude is 
reduced the subsequent electromagnetic fields 
become smaller. 

I. INTRODUCTION 
Considerable research has been spent 

treating the surface in contact with the lightning 
channel as a perfect conductor.  This ideology, 
in turn leveraged image theory to derive the 
resulting electromagnetic fields.  However, 
recently more emphasis has been placed upon 

taking into account surfaces which are no 
longer considered perfect conductors.   

In the literature, methods which are typically 
used to account for the lossy nature of 
conductive grounds have adopted the wavetilt 
formula, the Cooray formula, and the Cooray-
Rubinstein formula.  The wavetilt formula 
relates the Fourier transform of the horizontal 
electric field to that of the vertical electric field 
with the following expression [8], 
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Where ( )ωjEH  and ( )ωjEv  are the Fourier 
transforms of the horizontal and vertical electric 
fields respectively with the relative permittivity 
of the soil rε , soil conductivity σ, the imaginary 
constant j, the angular frequency ω, and 
permittivity of the air 0ε .  Although, this formula 
was found to be appropriate for remote 
observation points, it was deemed inapplicable 
for relatively close ranges [4].   

As pointed out by Rubinstein [5], Weyl [6] 
expressed the results of the Sommerfeld 
integrals for the fields from a dipole over an 
imperfectly conductive surface as a group of 
plane waves that are reflected and refracted by 
the ground surface at incident angles with both 
real and imaginary constituents.  Rubinstein [5] 
goes on to mention that if the surface ground is 
a relatively good conductor, these plane waves 
will refract at an angle that is approximately 
perpendicular to the surface of incident.   
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We know from image theory that a charge 
over an infinitely conductive ground has a 
perfect mirror image.  This “mirror image” can 
be quantified by taking the charge’s spatial 
coordinates which are perpendicular to the 
surface and rotating or projecting them by 180 
degrees.  Taking the cosine of this angle gives 
rise to an image charge that is equal in 
magnitude but opposite in polarity.  One can 
expand this idea to include the effect the 
surface conductivity has on the vertical and 
horizontal electric fields.   

Rubinstein [5] introduced a new formula, 
presently known as the Cooray-Rubinstein 
formula that calculates the horizontal electric 
field above an imperfect conductor.  This 
formula is broken into two terms, both of which 
assume a perfect conductive ground as shown 
by, 
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Where the first term is the horizontal electric 
field at a specified height h, the second term is 
the horizontal magnetic field at ground level 
multiplied by the surface impedance and p 
denotes a perfect conductor.  Rubinstein [5] 
goes onto show that for large values of r, (2) 
reduces to the wavetilt formula.  However, it 
was later shown by Shoory et al. [4] that the 
Rubinstein-Cooray formula for calculating the 
horizontal electric field is a valid approximation 
for close ranges but becomes inadequate for 
far ranges and poorly conducting grounds. 

This paper is organized as follows:  Section II 
presents Maxwell’s equations and provides the 
expressions that were used by [3] to derive the 
electric and magnetic field’s induced by a 
lightning strike.  Image theory is introduced in 
Section III while the idea of the degraded 
image is introduced in Section IV.  Section V 
introduces the electromagnetic fields from [3] 

to include the degraded current and Section VI 
provides the graphical comparison between the 
two.  Finally, some conclusions are drawn in 
Section VII.   

II. ELECTROMAGNETIC THEORY 
In differential form Maxwell’s equations for a 

homogeneous, time variant, and linear medium 
can be written [1, 2] where D is the electric 
displacement, E is the electric field, B is the 
magnetic field, H is the magnetic field strength, 
J is the current density, ρ is the charge 
distribution per unit volume, µ0 the magnetic 
permeability and 0ε  is the electric permittivity. 

 
 0/ ερ=⋅∇ E                                                                     (3) 

t∂
∂

−=×∇
HE 0μ                                                               (4) 

t∂
∂

+=×∇
EJH 0ε                                                           (5) 

00 =⋅∇ Hμ                                                                         (6) 

The preferred method, the dipole technique, 
leverages Maxwell’s equations to form a 
system of seven differential equations and 
seven unknowns given a known current 
distribution.  From (3) through (5) the seven 
equations can be written as follows: 
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With the seven unknowns given by 
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Given equations (4) and (6), one can solve 
for the electric and magnetic fields in terms of 
the vector potential A.  After the usage of some 
substitutions and vector identities one would 
obtain,  
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and 
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Given Lorentz Condition, 
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one can solve for the potential Ф to obtain, 
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Since at −= 0t  there is no charge, the scalar 
potential must be zero as well.  Therefore one 
can write the scalar potential in terms of the 
vector potential alone,  
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where 
00

1
εμ

=c , with c equaling the speed of 

light.  Finally, substitute the potential (18) into 
(14) to yield, 
 

( )
t

dc
t

∂
∂

−⋅∇∇= ∫
−

AAE
0

2 τ .             (19) 

 
Equations (15) and (19) will be used along 
vector potential A, 
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with the given current distribution, 
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where u is the Heaviside function, to develop 
the expressions used to describe the 
electromagnetic fields induced by a lighting 
strike. 

III. IMAGE THEORY 
Image theory, in its current form, assumes 

that an image charge is in the presence of 
perfect conductor.  By assuming the material is 
a “perfect conductor” allows one to account for 
all of the charge constituents.  We can illustrate 
a method of images by considering the 
problem given in Figure 1 for a point charge q 
located at y relative to the origin, around which 
is centered a grounded conducting sphere of 
radius a. 



 

 
 
Figure 1. Conducting Sphere of Radius a, with 
Charge q, and Image Charge q’ 
 

One could think about image theory this way.  
Let’s suppose you have a coherent light source 
and you shine it upon a dingy piece of metal.  
Some of the light will reflect back towards you 
but much of it will be lost due to refraction 
and/or absorption.  Now take the same 
coherent light source and shine it towards a 
highly reflective mirror.  You’ll notice that most 
of the light, about 99%, will reflect back while 
only ~1% is lost due to refraction and/or 
absorption.  Using the highly reflective mirror 
allowed you to account for the majority of light.  
That is, you’re cognizant of where the light 
went because it reflected back towards you.  In 
essence, by assuming we have a perfectly 
conducting material that acts like a mirror, 
allows one to project a particles image 180 
degrees from the radial position where the 
original particle lies with respect to the 
conductive surface.  This idea is illustrated in 
Figure 2. 

 

 
 
Figure 2. Solution by Method of Images 

 
Figure 2 assumes that we’re taking a very 

small slice of the spherical surface which 
houses the image charge as shown in Figure 
1.  If this section is small enough it can be 
modeled by a flat surface.  With this idea in 
mind, we can expand this thought by applying 
this same basic principle to a lightning strike 
return stroke as shown in Figure 3. 
 

 
Figure 3. Application of Image Theory Used for 
the Lightning Channel 
 



 

Figure 3 is a very high level illustration that 
depicts the lightning channel in contact with the 
earth’s surface.  The lightning channel can be 
represented by numerous adjoining steps, 
each of which may vary in length between 30 
and 50 meters.  Once the step leader meets up 
with a positively charged streamer emanating 
from the ground, a path for the return stroke 
has been created.  As the return stroke travels 
upward along the lightning channel at velocity v 
[7], it imparts positive charges along the way 
which generates a current wavefront which 
propagates along the channel.  Although this 
description brushes a broad stroke to the 
phenomenon that actually occurs, it can be 
further modified to encompass the idea of 
surfaces that are not perfect conductors as 
illustrated in Figure 4.    

IV. THE DEGRADED IMAGE 
In order to augment the approach used from  

image theory, this paper will introduce the idea 
of the degraded image.  This ideology 
accommodates both perfect and imperfect 
projected images.  With traditional image 
theory, it assumes that an image charge in the 
presence of a perfect conductor acts like a 
mirror.  However, as the surface in contact with 
the lightning return stroke becomes less 
conductive, one can no longer assume that the 
image remains unchanged.  In fact, one must 
concede to the idea that the entire image can 
no longer be projected in the same fashion as 
the image of a charge in the presence of a 
perfect conductor.  With the adoption of this 
idea in place, it’s logical to presume that as the 
grounding surface in contact with the lightning 
channel becomes less conductive, the image 
channel will become degraded as shown in 
Figure 4.  If we assume that the lightning 
channel’s width is finite, then any degradation 
to the channel will only occur along the z–axis.  
Subsequently, the magnitude of the current 
which travels along the image channel will 
decrease as well.  Given the image channel 

has become degraded, some of the charges 
that were once part of this channel have 
become displaced.  Since the conservation of 
charge must be preserved, these dislocated 
charges will now collect along the surface and 
induce currents which travel away from the 
channel.  As a consequence, the image current 
now contributes less to the vertical electric and 
azimuthal magnetic fields while creating a 
horizontal electric field. 

 

 
Figure 4. Application of the Degraded Image 
Used for the Lightning Channel 
 

Figure 4 illustrates the how the degraded 
image will change with respect to the perfect 
image as the conductivity, σ of the surface 
decreases.  As the surface becomes a perfect 
insulator, the magnitude of the degraded image 
channel approaches zero.  This methodology 
has purposely downplayed the physics of how 
image theory is employed to account for a 
charge which is in the presence of an imperfect 
conductive surface.  In doing so, this model 
formulates a solution that has minimized the 
complexity of the original problem while 
providing an approximation founded upon a 
geometric relationship.   Knowing how the 
image channel is affected by the surface 



 

conductivity allows one to develop an 
equivalency between the two by exploiting the 
geometry of Figure 4.  Since the contribution 
from the magnitude of the perfect image 
current is generally known, this value can be 
scaled to account for a changing conductivity 
as shown in Figure 5. 

 

 
Figure 5. Projection of the Degraded Current 
Used for the Lightning Channel 
 

As Figure 5 illustrates, the contribution from 
the degraded image can be quantified by 
taking the magnitude of the current which 
travels along the perfect image and scaling it 
by a factor which accounts for the loss.  This 
can be realized by taking the projection of the 
perfect image’s current and rotating it along the  
r–z axis until it shares the same z component 
as the degraded image.  Do so will allow one to 
associate the perfect image with the degraded 
image by multiplying the scaling factor, cos(γ).  
Therefore, we can write the degraded current 
in terms of the perfect current such that, 

 
( )γ= cosII 0d                                                                 (22) 

 
 

where dI  is the degraded image current, 0I  is 
the perfect image current and the cosine of the 
angle, γ  accounts for the loss.  In order to 
maintain the conservation of charge, one must 
arrive at the notion that the image charge 
constituents that are no longer present within 
the degraded image channel must now be 
present elsewhere.  With this in mind, we can 
infer that these image charges collect along the 
surface and induce currents which create 
electromagnetic fields in addition to those 
originally accounted for in [3].  Although these 
surface currents spread out radially, their 
contributions can be approximated by 
formulating two distinct currents, each of which 
lie on opposite sides of the channel-ground 
interface.  In principle, these two surface 
currents represent the summation of each of 
their respective radial constituents, thus 
formulating a viable approximation to those 
present.  We can describe these surface 
currents with the following,  
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where sI  equals the surface current.  By 
summing (22) and (23) we can now describe 
the contributions made by the image current for 
both perfect and imperfect conductive 
surfaces.  The total image current can now be 
written as, 
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where II  equals the image current from the 
degraded and surface elements. 
 

 

 



 

V. ELECTROMAGNETIC FIELDS 
 
The electric and magnetic fields from [3] were 

found to be 
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where, 
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and the quantity β = v/c is the ratio of the 
current propagation speed along the lightning 
channel and the speed of light. 

However, we can now modify these 
equations to account for surfaces in contact 
with lightning strikes that are of all types of 
conductivity.  By incorporating (22),(24) into 
(25) and (26) allows one to calculate the 
electromagnetic fields that would transpire in 
the presence of both perfect and imperfect 
conductive surfaces.  These fields can now be 
described by (28) and (29) such that  
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VI. RESULTS 
 

A. Illustration of the Magnetic Field in 
contact with a surface of varying 
conductivity 
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Figure 6. (a) Depicts the Magnetic Fields when  
r = 100m. (b) Depicts the Magnetic Field for 
angles 0 – pi/2 when t = 10-5 seconds and  
r = 100m 
 
 
 
 
 
 
 

 
 

B. Illustration of the Vertical Electric 
Field in contact with a surface of varying 
conductivity 
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Figure 7. (a) Depict the Electric Fields when  
r = 100m. (b) Depicts the Electric Field for 
angles 0 – pi/2 when t = 10-5 seconds and  
r = 100m 
 

 
 
 
 
 



 

As each graph illustrates, the effect to the 
magnetic and electric fields when γ = 0, 30, 45, 
60, and 90 degrees is appreciable.  One 
readily observes that as the angle gamma 
increases the subsequent fields decrease.  
However, it is important to note that the vertical 
electric field was slightly more affected by the 
surface conductivity than that of the horizontal 
magnetic field.  This is primarily due to the 
increased presence of surface currents which 
add to the magnetic field but not to the vertical 
electric field. 

VII. CONCLUSION 
The magnetic and electric fields which 

originate from a lightning strike return stroke in 
contact with both perfect and imperfect 
conductive surfaces have been presented.  
The model presented here purposely 
downplayed the physics of how image theory is 
employed to account for a charge which is in 
the presence of an imperfect conductive 
surface.  In turn, it adopted an approach which 
focused on the geometry that exists between 
the lightning channel and surface ground.  In 
doing so, the proposed model formulated a 
solution that minimized the complexity of the 
original problem while providing an 
approximation founded upon a geometric 
relationship.  As the results showed, the effects 
to the electromagnetic fields due to a decrease 
in ground conductivity were appreciable.   

REFERENCES 
[1] J. D. Jackson, Classical Electrodynamics, 

3rd ed. New Jersey: Wiley, 1999 
[2] C. A. Balanis, Advanced Engineering 

Electromagnetics. New Jersey: Wiley, 1989 
[3] M. Rubinstein, M. A. Uman “Methods for 

Calculating the Electromagnetic Fields from 
a Known Source Distribution: Application to 
Lightning”, IEEE Trans. On Electromagnetic 
Compatibility, vol. 31, no. 2, pp 183 – 189, 
May 1989 

[4] A. Shoory, R. Moini, S. H. Hesam Sadeghi, 
and V. A. Rakov “Analysis of Lightning-
Radiated Electromagnetic Fields in the 
Vicinity of Lossy Ground”, IEEE Trans. On 
Electromagnetic Compatibility, vol. 47, no. 1 
Feb 2005 

[5] M. Rubinstein “An Approximate Formula for 
the Calculation of the Horizontal Electric 
Field from a Lightning at Close, 
Intermediate, and Long Range”, IEEE 
Trans. On Electromagnetic Compatibility, 
vol. 38, no. 3, pp. 531 – 535  Aug. 1996 

[6] H. Weyl, “Ausbreitung Elektromagnetischer 
Wellen über einer ebenen Leiter”, Ann. D. 
Physik, vol. 60, pp. 481–500, 1919 

[7] V. A. Rakov “Lightning Return Stroke 
Speed”, Journal of Lightning Research, 
vol.1, 2007, pp. 80–89  

[8] M. J. Master and M. A. Uman “Lightning 
Induced Voltages on Power Lines: Theory” 
IEEE Trans. On Power Apparatus and 
Systems”, vol. PAS-103, no. 9, pp. 2502–
2518, Sept. 1984  

                                                           
 
 
 


