Humidity Measurement in H₂O₂ Bio-Decontamination

Relative Saturation as the Key

Meet the Presenters

Sanna Lehtinen

Product Manager at Vaisala with 20 years of experience in life science applications and wide product management experience from leading international high tech companies.

Piritta Maunu

Life Science Regulatory and Industry Expert at Vaisala with over 15 years of experience in biotechnology and life science applications.

- Basics of bio-decontamination with vaporized H₂O₂
- The importance of continuous measurement during bio-decontamination
- Patented PEROXCAP[®] technology
- The difference between Relative Humidity (RH%) and Relative Saturation (RS%)
- Five most typical pitfalls in humidity measurement during bio-decontamination

Q&A session

Basics of Bio-Decontamination with Vaporized H₂O₂

Why Use H₂O₂ for Bio-Decontamination

- Easy to use
- Destroys all biological contaminants
- Works in low temperature processes
- Processes can be validated
- Compatible with a wide variety of materials
- Environmentally friendly process
- Leaves no real residues only water vapor and oxygen

Isolators, RABS

- Pharma / Manufacturing of pharmaceuticals:
 - Aseptic filling
 - Sterility testing
 - Freeze dryers
- Pharmacy compounding
- Blood and tissue banks

Incubators

- Pharma / GLP, GCP
- Blood and tissue banks
- Scientific research

VAISALA

Transfer hatches, chambers

- Hospitals
- Pharma / Manufacturing of pharmaceuticals
- Cleanrooms
- Animal trials (food and supplies)
- Army
- Blood and tissue banks
- Pharmacy compounding

Production lines

- Processing plants
- Filling lines
- Milking machines

Vapor generators

- Clenrooms
- Healthcare (like hospitals)
- Animal trials (GLP)
- Service providers
- HVAC
- Transportation
 - Ambulance, airplane, cruisers, trucks
- Army
- Farming / Animal husbandry
- Construction

Bio-Decontamination Measurements

- H₂O₂, ppm
- Humidity
- Temperature

Our main topic today

Potential other parameters:

Time

AISAL

- Pressure (P) and differential pressure (dP)
- Airflow and velocity
- Airborne particles

The Importance of Continuous Measurement During Bio-Decontamination

Why Repeatable Online Measurements?

- Provides continuous measurement data
- Guarantees that a process works as planned
- May decrease a number of biological, chemical or enzymatic indicators
- From monitoring to controlling

Indicators vs. Online Measurements

	Chemical indicators (CI)	Biological indicators (BI)	Enzymatic indicators (EI)	Measurement sensor; Vaisala HPP272
What the product looks like?				
PROS	Inexpensive Easy to use	Quantitative results	Quantitative results Instantaneous reaction	Continuous, stable and repeatable measurement
CONS	Tells only "±" result Not quantitative results	Takes 7 days to get results Needs qualified personnel and laboratory premises	Manual work needed Doesn't give continuous measurement data	Doesn't tell if micro- organisms are dead; combine with BIs/EIs
What does this product measure ?	Change in color; H_2O_2 concentration	Reduction of micro- organisms (SAL min. 10 ⁻⁶)	Reduction of micro- organisms (SAL min. 10 ⁻⁶)	H ₂ O ₂ ppm concentration, RH/RS and temperature
	+	$ \begin{array}{c} 10^{6} \\ 10^{3} \\ 10^{-3} \\ 10^{-6} \end{array} $	10^{6} 10 ³ 10 ³ 10 ³ 10 ⁶	

Example Bio-Decontamination Cycle

Typical non-condensing bio-decontamination process in isolators

Patented PEROXCAP® Technology

The Vaisala PEROXCAP[®] sensor technology is based on two capacitive thin-film polymer sensors, building on the reliable HUMICAP[®] technology.

2018-11-28

The Difference Between Relative Humidity (RH%) and Relative Saturation (RS%)

Relative Saturation vs. Relative Humidity

RELATIVE SATURATION %

100% Condensation

RS% value is the only parameter for controlling condensation when H_2O_2 vapor is present.

0%

Maximum %RH

At every point RS = 100% RS

Maximum %RH

At every point RS = 100% RS

Maximum %RH is Dependent on Temperature

Maximum %RH is Dependent on Temperature

Humidity Measurement in H2O2 Bio-Decontamination - Relative Saturation as the Key

Maximum %RH is Dependent on ppm Concentration

At every point RS = 100% RS

Humidity Measurement in H2O2 Bio-Decontamination - Relative Saturation as the Key

Maximum %RH is Dependent on ppm Concentration

H2O2 ppm as a function of RS/RH sensor readings at T=5.0 'C

Humidity Measurement in H2O2 Bio-Decontamination - Relative Saturation as the Key

H2O2 ppm as a function of RS/RH sensor readings at T=5.0 'C

Humidity Measurement in H2O2 Bio-Decontamination - Relative Saturation as the Key

H2O2 ppm as a function of RS/RH sensor readings at T=50.0 'C

H2O2 ppm as a function of RS/RH sensor readings at T=50.0 'C

Humidity Measurement in H2O2 Bio-Decontamination - Relative Saturation as the Key

Five Most Typical Pitfalls in Humidity Measurement During Bio-Decontamination

Five Most Typical Pitfalls in Humidity Measurement During Bio-Decontamination

- 1. Understand how temperature affects RS%
- 2. Find out the correct measurement point
- 3. Control condensation with RS%
- 4. Select correct materials
- 5. Carefully plan onsite calibration

Pitfall 1: Understand How Temperature Affects RS%

Pitfall 2: Find out the Correct Measurement Point

- Location:
 - Inside a chamber
 - Based on BI/EI/CI testing
 - Worst case location
 - In inlet
 - In outlet
- Method:
 - In situ
 - Pump & tubing & sample cell
- Airflows:
 - Does a sensor stand for airflows?

Pitfall 3: Control Condensation with RS%

- RH not enough for condensation control
- RH value varies with temperature and ppmH2O2
- RS shows 100 %RS when the air mixture starts to condense

At every point RS = 100% RS

Pitfall 3: Control Condensation with RS%

Time 4xHPP272 and several other brand's sensors tested

Pitfall 4: Select Correct Materials

- Material effects:
 - Absorbtion
 - Decomposition
 - Desorbtion or out-gassing
- Good results with:
 - PTFE
 - LCP
 - 316L (stainless steel)
 - Pure aluminium

Pitfall 4: Select Correct Materials

Long out-gassing times with wrongly selected materials.

Material desorption of various plastics

Pitfall 5: Carefully Plan On-site Calibration

- Challenge with H₂O₂ vapor
 - Difficult to achieve stable conditions
- Solution with PEROXCAP sensors
 - Based on humidity sensors
 - On-site calibration is easy to do with any humidity chamber
- For best measurement performance
 - Traceable H₂O₂ factory calibration available at Vaisala Service center
 - With both humidity and H₂O₂ vapor

- Basics of bio-decontamination with vaporized H₂O₂
- The importance of continuous measurement during bio-decontamination
- Patented PEROXCAP[®] technology
- The difference between Relative Humidity (RH%) and Relative Saturation (RS%)
- Five most typical pitfalls in humidity measurement during bio-decontamintion

Q&A session

Q&A Session

Humidity Measurement in H2O2 Bio-Decontamination - Relative Saturation as the Key

Thank You for Attending!

PEROXCAP[®] calibration technical note

HPP270 Series data sheet

- Learn more about Bio-decontamination
 - Blogs
 - Videos
 - Application Notes

