Humidity Measurement in H$_2$O$_2$
Bio-Decontamination
– Relative Saturation as the Key
Meet the Presenters

Sanna Lehtinen
Product Manager at Vaisala with 20 years of experience in life science applications and wide product management experience from leading international high tech companies.

Piritta Maunu
Life Science Regulatory and Industry Expert at Vaisala with over 15 years of experience in biotechnology and life science applications.
Basics of bio-decontamination with vaporized H_2O_2

The importance of continuous measurement during bio-decontamination

Patented PEROXCAP® technology

The difference between Relative Humidity (RH%) and Relative Saturation (RS%)

Five most typical pitfalls in humidity measurement during bio-decontamination

Q&A session
Basics of Bio-Decontamination with Vaporized H₂O₂
Why Use H_2O_2 for Bio-Decontamination

- Easy to use
- Destroys all biological contaminants
- Works in low temperature processes
- Processes can be validated
- Compatible with a wide variety of materials
- Environmentally friendly process
- Leaves no real residues – only water vapor and oxygen
Isolators, RABS

- Pharma / Manufacturing of pharmaceuticals:
 - Aseptic filling
 - Sterility testing
 - Freeze dryers
- Pharmacy compounding
- Blood and tissue banks

Transfer hatches, chambers

- Hospitals
- Pharma / Manufacturing of pharmaceuticals
- Cleanrooms
- Animal trials (food and supplies)
- Army
- Blood and tissue banks
- Pharmacy compounding

Vapor generators

- Clenrooms
- Healthcare (like hospitals)
- Animal trials (GLP)
- Service providers
- HVAC
- Transportation
 - Ambulance, airplane, cruisers, trucks
- Army
- Farming / Animal husbandry
- Construction

Incubators

- Pharma / GLP, GCP
- Blood and tissue banks
- Scientific research

Production lines

- Processing plants
- Filling lines
- Milking machines
Bio-Decontamination Measurements

- \(\text{H}_2\text{O}_2, \ \text{ppm} \)
- Humidity
- Temperature

Our main topic today

Potential other parameters:
- Time
- Pressure (P) and differential pressure (dP)
- Airflow and velocity
- Airborne particles
The Importance of Continuous Measurement During Bio-Decontamination
Why Repeatable Online Measurements?

- Provides continuous measurement data
- Guarantees that a process works as planned
- May decrease a number of biological, chemical or enzymatic indicators
- From monitoring to controlling
Indicators vs. Online Measurements

<table>
<thead>
<tr>
<th>What the product looks like?</th>
<th>Chemical indicators (CI)</th>
<th>Biological indicators (BI)</th>
<th>Enzymatic indicators (EI)</th>
<th>Measurement sensor; Vaisala HPP272</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROS</td>
<td>Inexpensive</td>
<td>Quantitative results</td>
<td>Quantitative results</td>
<td>Continuous, stable and repeatable measurement</td>
</tr>
<tr>
<td></td>
<td>Easy to use</td>
<td></td>
<td>Instantaneous reaction</td>
<td></td>
</tr>
<tr>
<td>CONS</td>
<td>Tells only "±" result</td>
<td>Takes 7 days to get results</td>
<td>Manual work needed</td>
<td>Doesn’t tell if micro-organisms are dead; combine with BIs/EIs</td>
</tr>
<tr>
<td></td>
<td>Not quantitative results</td>
<td>Needs qualified personnel and laboratory premises</td>
<td>Doesn’t give continuous measurement data</td>
<td></td>
</tr>
<tr>
<td>What does this product measure?</td>
<td>Change in color; H₂O₂ concentration</td>
<td>Reduction of micro-organisms (SAL min. 10⁻⁶)</td>
<td>Reduction of micro-organisms (SAL min. 10⁻⁶)</td>
<td>H₂O₂ ppm concentration, RH/RS and temperature</td>
</tr>
</tbody>
</table>
Example Bio-Decontamination Cycle

Typical non-condensing bio-decontamination process in isolators
Patented PEROXCAP® Technology
The Vaisala PEROXCAP® sensor technology is based on two capacitive thin-film polymer sensors, building on the reliable HUMICAP® technology.
New Measurement Technology; PEROXCAP®

H₂O₂ molecules

H₂O molecules

Catalytic layer on top of sensor 2

HUMIDITY SENSOR 1

HUMIDITY SENSOR 2
New Measurement Technology; PEROXCAP®

H$_2$O$_2$ H$_2$O

HUMIDITY SENSOR 1 HUMIDITY SENSOR 2
New Measurement Technology; PEROXCAP®

H₂O₂ — H₂O

HUMIDITY SENSOR 1

HUMIDITY SENSOR 2

Humidity Measurement in H₂O₂ Bio-Decontamination - Relative Saturation as the Key
New Measurement Technology; PEROXCAP®

H₂O₂

H₂O

HUMIDITY SENSOR 1

CATALYTIC LAYER

HUMIDITY SENSOR 2
New Measurement Technology; PEROXCAP®

H₂O₂ H₂O

HUMIDITY SENSOR 1 CATALYTIC LAYER

HUMIDITY SENSOR 2
New Measurement Technology; PEROXCAP®

H₂O₂
H₂O

HUMIDITY SENSOR 1

CATALYTIC LAYER

HUMIDITY SENSOR 2
New Measurement Technology; PEROXCAP®

H$_2$O$_2$

H$_2$O

HUMIDITY SENSOR 1

HUMIDITY SENSOR 2

RELATIVE HUMIDITY, RH%

ALGORITHMS

CATALYTIC LAYER

Humidity Measurement in H2O2 Bio-Decontamination - Relative Saturation as the Key
New Measurement Technology; PEROXCAP®
New Measurement Technology; PEROXCAP®

H₂O₂
H₂O

H₂O₂ CONCENTRATION, ppm
RELATIVE SATURATION, RS%
RELATIVE HUMIDITY, RH%
ALGORITHMS
CATALYTIC LAYER
HUMIDITY SENSOR 1
HUMIDITY SENSOR 2

Humidity Measurement in H₂O₂ Bio-Decontamination - Relative Saturation as the Key
The Difference Between Relative Humidity (RH%) and Relative Saturation (RS%)
Relative Saturation vs. Relative Humidity

Only H₂O vapor present

H₂O and H₂O₂ vapor present
RS% value is the only parameter for controlling condensation when H$_2$O$_2$ vapor is present.
Maximum %RH

At every point RS = 100% RS
Maximum %RH

At every point RS = 100% RS
Maximum %RH is Dependent on Temperature

At every point RS = 100% RS

H2O2 concentration (ppm)

Temperature (°C)

Temperature (°C)

H2O2 concentration (ppm)

~ 53% RH

~ 72% RH

RS = 100% RS

Maximum %RH is Dependent on Temperature

At every point RS = 100% RS
Maximum %RH is Dependent on Temperature

At every point RS = 100% RS

Rule:

Higher the °C

Higher the max. RH%
Maximum %RH is Dependent on ppm Concentration

At every point RS = 100% RS
Maximum %RH is Dependent on ppm Concentration

At every point RS = 100% RS

Rule:

Higher the ppm

Lower the max. RH%

Bigger the difference RH% vs. RS%

Table:

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>H2O2 concentration (ppm)</th>
<th>RH%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>600</td>
<td>~40%</td>
</tr>
<tr>
<td>20</td>
<td>400</td>
<td>~53%</td>
</tr>
<tr>
<td>30</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
H$_2$O$_2$ ppm as a Function of RS/RH Sensor Readings at 20.0°C
H₂O₂ ppm as a Function of RS/RH Sensor Readings at 20.0°C
H_2O_2 ppm as a Function of RS/RH Sensor Readings at 20.0°C

Approximately 53% RH
H$_2$O$_2$ ppm as a Function of RS/RH Sensor Readings at 20.0°C

~ 53% RH
H_2O_2 ppm as a Function of RS/RH Sensor Readings at 5°C

H_2O_2 ppm as a function of RS/RH sensor readings at $T=5.0 \, ^\circ C$

RH%

RS%

H_2O_2 ppm
H₂O₂ ppm as a Function of RS/RH Sensor Readings at 5°C

H₂O₂ ppm as a function of RS/RH sensor readings at T=5.0 °C

Rule:

At 5°C

Max.

~ 550 ppm

H₂O₂ ppm

RH%

RS%
H$_2$O$_2$ ppm as a Function of RS/RH Sensor Readings at 50°C

H$_2$O$_2$ ppm as a function of RS/RH sensor readings at $T=50.0$ °C

H$_2$O$_2$ ppm

RH%

RS%
H₂O₂ ppm as a Function of RS/RH Sensor Readings at 50°C

Rule:

At 50°C

Max.

~12500 ppm H₂O₂
Five Most Typical Pitfalls in Humidity Measurement During Bio-Decontamination
Five Most Typical Pitfalls in Humidity Measurement During Bio-Decontamination

1. Understand how temperature affects RS%
2. Find out the correct measurement point
3. Control condensation with RS%
4. Select correct materials
5. Carefully plan onsite calibration
Pitfall 1: Understand How Temperature Affects RS%

1. T = 22 °C
 RS = 89.5 %RS

2. T = 21.5 °C
 RS = 94.5 %RS

3. T = 21 °C
 RS = 100 %RS
Pitfall 2: Find out the Correct Measurement Point

- **Location:**
 - Inside a chamber
 - Based on BI/EI/CI testing
 - Worst case location
 - In inlet
 - In outlet

- **Method:**
 - In situ
 - Pump & tubing & sample cell

- **Airflows:**
 - Does a sensor stand for airflows?
Pitfall 3: Control Condensation with RS%

- RH not enough for condensation control
- RH value varies with temperature and ppmH2O2
- RS shows 100 %RS when the air mixture starts to condense

At every point
RS = 100% RS
Pitfall 3: Control Condensation with RS%

Humidity, RH% or RS% vs Time

- Water vapor only
- Water and hydrogen peroxide vapor
- NO CONDENSE: Relative saturation ~ 60 %RS
- RH readings of other brands' sensors without catalytic filters
- HPP272 RS readings
- RH readings of HPP272 and other brands' sensors with catalytic filters

4xHPP272 and several other brand's sensors tested
Pitfall 4: Select Correct Materials

- Material effects:
 - Absorption
 - Decomposition
 - Desorption or out-gassing

- Good results with:
 - PTFE
 - LCP
 - 316L (stainless steel)
 - Pure aluminium
Pitfall 4: Select Correct Materials

- Long out-gassing times with wrongly selected materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Desorption maximum [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE</td>
<td>1.3</td>
</tr>
<tr>
<td>PFA</td>
<td>1.3</td>
</tr>
<tr>
<td>LCP</td>
<td>3.0</td>
</tr>
<tr>
<td>PPS</td>
<td>28.5</td>
</tr>
<tr>
<td>PC</td>
<td>57.2</td>
</tr>
<tr>
<td>PBT</td>
<td>67.2</td>
</tr>
<tr>
<td>ABS</td>
<td>74.2</td>
</tr>
<tr>
<td>Ixef</td>
<td>82.3</td>
</tr>
</tbody>
</table>

Material desorption of various plastics

![Graph showing material desorption of various plastics](image-url)
Pitfall 5: Carefully Plan On-site Calibration

- Challenge with H$_2$O$_2$ vapor
 - Difficult to achieve stable conditions

- Solution with PEROXCAP sensors
 - Based on humidity sensors
 - On-site calibration is easy to do with any humidity chamber

- For best measurement performance
 - **Traceable** H$_2$O$_2$ factory calibration available at Vaisala Service center
 - With both humidity and H$_2$O$_2$ vapor
Conclusion

- Basics of bio-decontamination with vaporized H$_2$O$_2$
- The importance of continuous measurement during bio-decontamination
- Patented PEROXCAP® technology
- The difference between Relative Humidity (RH%) and Relative Saturation (RS%)
- Five most typical pitfalls in humidity measurement during bio-decontamination
- Q&A session
Q&A Session